
NPS ARCHIVE

LEONARD, A.

NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

Thesis
L5292

FRONT LOADED ACCURATE REQUIREMENTS
ENGINEERING (FLARE); A REQUIREMENTS
ANALYSIS CONCEPT FOR THE 21

st CENTURY

by

Anthony E. Leonard

June, 1997

Thesis Advisor:

Co-Advisor:

Luqi

Valdis Berzins

Approved for public release; distribution is unlimited

-YCAcCA & "301
1

'^LEY KNOX LIBRARY
5TGRAD

REPORT DOCUMENTATION PAGE Form Approved OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data

sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other

aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports. 1215 Jefferson Davis Highway, Suite 1204. Arlington, VA 22202-4302. and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188)

Washington DC 20503.

1 . AGENCY USE ONLY (Leave blank) REPORT DATE
June 1997

REPORT TYPE AND DATES COVERED
Master's Thesis

FRONT LOADED ACCURATE REQUIREMENTS ENGINEERING (FLARE); A
REQUIREMENTS ANALYSIS CONCEPT FOR THE 2 I

st CENTURY

6. AUTHOR(S) Leonard Anthony E.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Naval Postgraduate School

Monterey CA 93943-5000

8. PERFORMING
ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U.S. Government.

12a. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

1 3 . ABSTRACT (maximum 200 words)

This thesis focuses on ways to apply requirements engineering techniques and methods during the development

and evolution ofDoD software systems in an effort to reduce changes to system requirements. The major goal of this

thesis is to provide a feasible course of action (COA) that reduces changes to requirements caused by the turnover ofDoD
decision-makers.

We demonstrate a distributed requirements engineering environment using computer aided software engineering

tools linked together with electronic mail. We create this distributed requirements engineering environment using

Netscape Communicator, Microsoft's Internet Explorer, Microsoft's Access97 database, Rational Corporation's Rational

Rose, Matt Wright's FormMail, and Thompson Software Products' ObjectAda.

We propose a COA to reduce requirements changes caused by the turnover of decision-makers that is based on the

use of specialized requirements engineering teams composed of active duty officers by the geographic and functional

Commanders in Chief. These teams use the distributed requirements engineering environment described above to assist in

the rapid elicitation of requirements and to increase user participation in the requirements engineering process.

14. SUBJECT TERMS Requirements Engineering, Requirements Analysis, Requirements

Management.

15. NUMBER OF

PAGES 93

16. PRICE CODE

17. SECURITY CLASSIFICA-
TION OF REPORT
Unclassified

SECURITY CLASSIFI-

CATION OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICA-

TION OF ABSTRACT
Unclassified

20. LIMITATION OF
ABSTRACT
UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. 239-18 298-102

11

Approved for public release; distribution is unlimited

FRONT LOADED ACCURATE REQUIREMENTS ENGINEERING
(FLARE); A REQUIREMENTS ANALYSIS CONCEPT FOR THE 21

st

CENTURY

Anthony E. Leonard

Captain, United States Army

B.S.B.A., Glenville State College, 1986

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
June 1997

fiPi Ave '-c

V-^oy -).rc3 y A

°>X I IBP

'

DUDLEY KNOX LIBRARY HOOL
Al POSTGRADUATE SC-H

•iTTO-YCA 93943-5101

ABSTRACT

This thesis focuses on ways to apply requirements engineering techniques and methods during the

development and evolution ofDoD software systems in an effort to reduce changes to system requirements.

The major goal of this thesis is to provide a feasible course of action (COA) that reduces changes to

requirements caused by the turnover ofDoD decision-makers.

We demonstrate a distributed requirements engineering environment using computer aided

software engineering tools linked together with electronic mail. We create this distributed requirements

engineering environment using Netscape Communicator, Microsoft's Internet Explorer, Microsoft's

Access97 database, Rational Corporation's Rational Rose, Matt Wright's FormMail, and Thompson

Software Products' ObjectAda.

We propose a COA to reduce requirements changes caused by the turnover of decision-makers

that is based on the use of specialized requirements engineering teams composed of active duty officers by

the geographic and functional Commanders in Chief. These teams use the distributed requirements

engineering environment described above to assist in the rapid elicitation of requirements and to increase

user participation in the requirements engineering process.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1

A. BACKGROUND 1

1

.

The Problem 1

2. Requirements Engineering Defined 1

3. Requirements Engineering Challenges Uniquie to DoD 2

4. Software Developers Lack Problem Domain Expertise 3

B. SCOPE 3

C. THESIS ORGANIZATION 4

II. PREVIOUS WORK 7

A. INTRODUCTION 7

B. REQUIREMENTS ENGINEERING PARADIGMS 7

1. Object Oriented Analysis 7

2. Analysis Using Prototypes 7

3. Analysis Using Use-Cases 8

4. Assessment and Reccommendation 8

C. DOD REQIHREMENTS ENGINEERING ORGANIZATIONS 9

1. DISA 9

2. NRL 9

3. NPS 10

D. SUMMARY 10

III. A REQUIREMENTS STABILIZATION COURSE OF ACTION 13

A. INTRODUCTION 13

B. WHY A FLARE TEAM IS NEEDED 13

C. FLARE TEAM MISSION AND COMPOSITION 14

1. Team Mission 15

2. Team Composition 15

D. METHODS USED BY THE FLARE TEAM 15

E. FLARE TEAM'S ROLE IN THE SOFTWARE ACQUISITION SYSTEM 16

1. Team's Interaction with the Problem Domain 16

2. Team's Interaction with Program Managers (PM) 16

3. Team's Interaction with Integrated Product Teams (IPT) 17

4. Team's Interaction with Developers 17

F. SUMMARY 18

IV. BRINGING THE PROBLEM DOMAIN TO THE IMPLEMENTATION DOMAIN 19

A. INTRODUCTION 19

B. CASE ENVIRONMENT ENHANCEMENT USING INTERNET TECHNOLOGD2S . 19

C. AUGMENTATION OF FORMAL AND INFORMAL SPECIFICATIONS WITH
VIDEO 20

1. The New Memory Paradigm 21

2. Augmentation of Specification and Design Languages with Video 22

D. PROGRAMMER INPUT INTO THE WORK TASKING PROCESS 23

E. SUMMARY 25

V. FLARE: A REQUIREMENTS ENGINEERING ENVIRONMENT 27

A. INTRODUCTION 27

VII

B. FLARE'S COMPOSITION 27
1. Microsoft's Access 97 27
2. An Access Database File; FLARE.mdb 27
3. An Electronic Mail File Parser; FLARE.exe 27
4. A Set of JavaScript Enhanced HTML Files 28
5. A JavaScript Enabled Internet Browser 28
6. An Electronic Mail Program 28
7. FormMail 28

C. FLARE'S USERS INTERFACE 28
1. Requirements Pull-Down Menu 29

a. Enter Requirement 29

b. View Requirements 30
c. Ask a Req. Question 30
d. View requirements Questions 31

e. Mission Needs Statement 31

2. Design Pull-Down Menu 31

a. Enter Specification 31

b. Remaining Menu Options 32

3. Implementation Pull-Down Menu 32

a. Enter Estimates 32

b. Remaining Menu Options 32

4. Maintenance Pull-Down Menu 32

a. Enter a Bug Report 32

b. Enter Change Request 33

c. Remaining Menu Options 33

D. ELECTRONIC MAIL PARSER 33

E. FLARE DATABASE 33

1. Scheduling Algorithm 34

2. Database Tables 35

a. Table: assignedmodules 35

b. Table: bugReport 35

c. Table: changeRequest 35

d. Table: engineers 35

e. Table: estimates 35

f. Table: Questions 35

g. Table: imported_estimates 35

h. Table: importedrequirements 35

i. Table: information_requests 36

j . Table: MNS 36

k. Table: modules 36

1. Table: programmers 36

m. Table: specification 36

3. Database Queries 36

a. Query: remove duplicate estimates query 36

b. Query: update matched estimates 36

c. Query: estimate Query 37

d. Query: assigned_Q 37

e. Query: modules without matching assigned modules 37

f. Query: update unmatched modules 37

4. Database Forms 37

Vlll

F. FLARE COMPARED TO OTHER DISTRIBUTED ENVmONMENTS 37
1. DOORS 38
2. WISE 38

G. SUMMARY 38

VI. CASE STUDY 39

A. INTRODUCTION 39

B. MISSION NEEDS STATEMENT 39

C. REQWREMENTS IDENTIFICATION 40

1. Initial Requirements 40

2. Requirements Entered Using a Form 40

D. SYSTEM DESIGN 41

E. IMPLEMENTATION 43

F. MAINTENANCE 44

G. NEW REQUIREMENTS ARE IDENTIFIED; THE SYSTEM EVOLVES 44

H. SUMMARY 45

VII. CONCLUSIONS AND FUTURE WORK 47

A. RESEARCH CONTRIBUTIONS 47

B. SUGGESTIONS FOR FUTURE RESEARCH 47

1. Proof of Concept Experiment for the Special Staff 47

2. Requirements Tracing Features 47

3. Report Generation Enhancement 48

4. Module Assignment Algorithm Enhancement 48

APPENDIX A. ELECTRONIC MADL FILE PARSER SOURCE CODE 49

APPENDIX B. FLARE INTERFACE SOURCE CODE 63

LIST OF REFERENCES 73

BIBLIOGRAPHY 79

INITIAL DISTRIBUTION LIST 81

IX

I. INTRODUCTION

A. BACKGROUND

1. The Problem

The high turnover rate of Department of Defense (DoD) commanders results in changing system

requirements. New requirements are generated by the introduction ofnew leaders in positions having the

authority to influence the development of hardware and software systems. It is common practice to rotate

high level decision-makers out of their positions every two years or less. Each new decision-maker has

"their way" of conducting business, and they often make significant changes in their organization's

working procedures. This dynamic environment, caused by decision-maker turnover, makes it difficult for

any software program to remain consistent throughout its life cycle. For obvious reasons, this practice also

is a major contributor to changing requirements; users' needs change with changes in users.

The United States wasted an "estimated 100 billion dollars in 1996" on failed software systems

[Ref. 1 :p. 73]. The DoD is responsible for a significant portion of this, and with today's shrinking budget,

the DoD needs to eliminate the number of undelivered, unusable, and unwanted software systems.

Additional domain-expert involvement in the requirements engineering process is needed to achieve this

reduction. This thesis addresses this problem by proposing a process that is based on the use of specialized

requirements engineering teams by commanders of unified commands [Ref. 2:p. IV-5] to manage software

system requirements enabling the DoD to purchase software products that meet their needs, by designing a

tool to support this process, and by assessing the effectiveness of this new tool.

2. Requirements Engineering Defined

This thesis addresses two fundamental problems associated with Requirements Engineering:

"Problems of investigating the goals, functions, and constraints of a software system; [and] Overcoming

barriers to communication..." [Ref. 3:p. 215]. We use the following definition of Requirements

Engineering. "Requirements engineering is the disciplined application of scientific principles and

techniques for developing, communicating, and managing requirements" [Ref. 4:p. 68].

3. Requirements Engineering Challenges Unique to DoD

Accurate determination of requirements is essential to the defense community's efforts to

eliminate unwanted, unneeded, or ineffective software systems. Requirements engineering in the DoD is

unique because of the complex qualities of the military environment and its dissimilarity with the normal

civilian environment. Software developers who are unfamiliar with the military environment are usually

uncertain about the exact needs of military users, yet they are expected to accurately determine

requirements of software systems that must meet these needs. Additionally, software developers with

proven records of accomplishment working with the DoD are not experts in the problem domain. They

experience employee turnover, focus only on areas they deem profitable, and their experience with the

problem domain is limited to past and current contracts covering specialized stove-piped systems.

Research shows that under these conditions, of uncertainty about the problem domain, it is beneficial to

have user participation in the requirements analysis phase of the software development life cycle [Ref. 5].

DoD decision-makers are the engines that produce requirements. These new or changing

requirements are a primary stimulus that causes entrance into the requirements engineering phase of the

software life cycle. This is illustrated in Figure 1 . DoD decision-makers are responsible for two events

—
. .

--,
1

SOFTWARE UFE CYCLE

/ /
REQUIREMENTS
ENGINEERING

PHASE

|

-,,,,;...,

7

7
NEW NE.ED

/

CHANGED NEED

Figure 1. Events Causing Transitions to Requirements Engineering Phase.

that trigger a transition to the requirements engineering phase. The first occurs when a commander

determines that an existing software system no longer meets the command's needs. The second is when a

new need is identified, automation is capable of satisfying it, and a decision is made to develop a new

system or modify an existing one to satisfy the need.

Requirements engineering is important to the DoD decision-maker because nearly every DoD

software system is potentially life critical. It is conceivable that the failure of seemingly unimportant, non-

critical systems could have adverse effects on the ability of our military forces to fight and win our nation's

wars. These critical systems are initially defined and subsequently redefined in the requirements

engineering phase. Poor application of requirements engineering techniques, principles, and methods can

introduce unnecessary risk into the software system development process.

4. Software Developers Lack Problem Domain Expertise

The DoD relies mostly on civilian employees and contractors to analyze, design, implement, test,

evolve, and maintain its computer hardware and software systems. The DoD's civilian Software Engineers

and contractors may have close associations with uniformed personnel, and undoubtedly some of their

employees are veterans, but taken as a whole they lack expertise in the problem domain of the uniformed

DoD decision-maker. This is especially true for the least mobile members of the development team, the

programmers.

Lack of communication between programmers and problem domain experts complicates coding

efforts of the development team. In the context of a software life cycle consisting of "analysis,

requirements definition, design, coding, testing, and operation and maintenance [phases]" [Ref.6:p. 397]

the programmer is three phases removed from the problem domain. Requirements are vulnerable and care

must be taken to preserve the essence of each requirement during the four translations of the user's needs

from the problem domain to the coding phase of the life cycle (See Figure 2).

B. SCOPE

We propose a theoretical requirements engineering team made up of active duty officers, and

show how this team can use commercial off the shelf (COTS) and government of the shelf (GOTS)

software tools to determine, record, and manage user requirements. We show how this Front Loaded

Accurate Requirements Engineering (FLARE) Team fits into the acquisition process. Finally, to show that

the use of a FLARE Team is feasible, we provide a case study ofhow Software Engineers used the same

REQUIREMENT SPECIFICATION

IMPLEMENTATION

Figure 2. Translations from problem domain to the coding phase.

REQUIREMENT IDENTIFICATION

methods, techniques, and principles that our theoretical FLARE Team would use to produce a new

computer-assisted software engineering (CASE) tool appropriately named FLARE.

C. THESIS ORGANIZATION

Chapter I outlines why requirements engineering is important to DoD decision-makers. Chapter II

provides an overview of three common requirements engineering paradigms: Object Oriented Analysis

(OOA) [Ref. 7, 8, 9], Analysis Using Prototypes (AUP) [Ref. 10], and analysis using Use-Cases [Ref. 11].

A brief overview of the most significant DoD requirements engineering work is provided with an

assessment ofhow the three requirements engineering paradigms fit into the FLARE process. Chapter III

details the purpose ofFLARE Teams, their composition, and their placement within the DoD software

acquisitions system. Chapter IV answers the question: What easy-to-use methods and tools designed to

assist Software Engineers in the solicitation, determination, and recording of requirements are available to

this hypothetical team? We show how to use Internet technologies to assist in the requirements engineering

effort, and we show how the dramatic reduction in information storage costs allows Software Engineers to

economically represent the problem domain using audio and video. Chapter V introduces FLARE, a new

requirements engineering tool developed for this thesis that will aid in the communication and management

of system requirements. Chapter VI contains a case study of the development of a CASE tool using

FLARE. Chapter VII discusses topics that warrant further research and summarizes the research

contributions made in this thesis.

n. PREVIOUS WORK

A. INTRODUCTION

This chapter provides a brief overview of the major requirements engineering paradigms

commonly used to elicit and manage requirements. Additionally, the major requirements engineering work

done by the DoD is summarized.

Software Engineers have developed a multitude ofmethods and tools to aid them in their effort to

manage requirements [Ref. 12, 13]. The majority of these methods and tools support Software Engineers

as they use one of the three major requirements elicitation paradigms: Object Oriented Analysis [Ref. 8, 9],

Analysis Using Prototypes [Ref. 10], and analysis using Use-Cases [Ref. 11].

B. REQUIREMENTS ENGINEERING PARADIGMS

1. Object Oriented Analysis

Of the three common requirements analysis paradigms, Object Oriented Analysis is the most

frequently mentioned. Object oriented techniques allow Software Engineers to wrap problem domain

concepts into independent entities. These entities can promote reuse and allow engineers to simplify the

concepts that are found in the problem domain using abstraction. Once an object is defined, it can be

copied and inserted into the software engineering process at any time. Abstraction, inheritance, and

polymorphism are the strengths of OOA. [Ref. 7]

OOA's main weakness is its lack of formality. The products produced using OOA, namely the

object models, can be interpreted in more than one way. This ambiguity introduces risk into the analysis

process because it is impossible to guarantee that various Software Engineers in the development team will

have a common interpretation of the object models after they are created. [Ref. 14] This problem can be

addressed by formalizing OOA using logic, but that requires advanced training for the analysis team

[Ref. 15].

2. Analysis Using Prototypes

Recorded requirements rarely reflect the actual requirements of a software system. Prototypes

allow users to discover additional requirements during the developmental phase of a project as opposed to

discovering them upon delivery of the system, which happens using the other two requirements engineering

paradigms. This iterative requirements elicitation process allows users to modify inappropriate system

requirements before delivery. Additionally, the software engineering environments that are provided by

prototyping tools provide a means to manage requirements throughout the life cycle of a system. [Ref. 16]

Analysis using prototypes is a highly interactive way to conduct requirements engineering,

provided the actual users of the system fully participate. Prototypes are a catalyst for communication. The

paradigm is based on showing the user an approximation of the system before the actual system is

delivered. The user's reactions are observed, and the set of requirements of the system is modified based

on the user's reaction to the prototype. [Ref 17:p. 18]

3. Analysis Using Use-Cases

Software Engineers use this paradigm to elicit requirements from the problem domain through

identification of events that occur in the problem domain. The objects linked with these events are

identified and recorded as being associated with the event. In addition, the conditions existing before,

during, and after each event are recorded. These conditions are used in the design and implementation

phases to assist in the development of preconditions, invariants, and post-conditions.

The paradigm was developed by Ivar Jacobson and has been widely adopted by the software

engineering community. [Ref. 11] Two of the newest software engineering methods, the OCTOPUS

method [Ref. 18] and the Unified Modeling Language [Ref. 19], rely heavily on the Use-Case paradigm to

elicit the requirements from the problem domain.

4. Assessment and Recommendation

FLARE teams will use all three paradigms. Each provides unique capabilities to Requirements

Engineers. Initially the teams will use OOA to identify objects. The teams will use these objects to

conduct an exhaustive Use-Case analysis; updating the object models as new objects are identified. The

teams will use prototypes of the proposed system as soon as enough information is elicited from the

problem domain to identify an appropriate predefined prototype to present to users. The more experienced

members of the teams will use formal methods to described critical portions of the proposed system as they

are identified. The teams will use the CASE tool FLARE that we introduce in this thesis to manage the

8

information produced in the requirements development process. Additionally, the team will use the tool to

facilitate the communication of the various object models, functional models, use-case diagrams,

prototypes, formal requirements specifications, and informal requirements specifications.

C. DOD REQUIREMENTS ENGINEERING ORGANIZATIONS

The user of a software system is responsible for the identification of the requirements of the

software systems they purchase, but most users lack the ability to determine and specify their requirements

in a meaningful way. However, some components of the DoD have dedicated considerable resources to

requirements engineering. We mention three of them in this thesis. The U.S. Defense Information Systems

Agency (DISA) uses requirements engineering methods on the Global Command and Control System

(GCCS) and the Defense Information Infrastructure Common Operating Environment (DEI COE) [Ref 20],

which are two large software systems. The U.S. Naval Research Laboratory (NRL) has adopted the work

of David Pamas [Ref. 21] to produce an in-house formal method to specify requirements that has been used

on large software projects [Ref 22]. The U.S. Naval Postgraduate School's (NPS) Computer Science

Department is developing a software engineering tool that promises to enhance a Software Engineer's

ability to engineer requirements.

1. DISA

DISA's D7 department is devoted to the elicitation and analysis ofjoint military requirements

[Ref. 23]. It appears that DISA is the only organization within the DoD actively using the Internet to aid in

the management of requirements. On their Internet home page for the Common Operating Environment

(COE) they provide a link to the "Software Requirements Specification (SRS) for the Defense Information

Infrastructure (DII) Common Operating Environment (COE) Common Support Applications." [Ref. 24] At

this site, DISA has taken the first step of audio/visual representation of requirements by providing, where

appropriate, a picture to augment the written requirement.

2. NRL

NRL has developed an informative tutorial covering requirements engineering titled "Software

Requirements: A Tutorial" [Ref. 25] that explains why an accurate and sufficient requirements analysis of

the problem domain is critical for successful software systems development. The tutorial explains the

differences between the major requirements engineering techniques and presents a good explanation of why

it is so difficult for users to know and accurately specify what they want from a software system.

NRL has also developed the software cost reduction (SCR) method, a requirements engineering

tool that shows promise in reducing the failure rate of software systems. It does this by adding formalism

into the requirement engineering process. Specifically, requirements elicited from the problem domain are

specified formally, preventing ambiguity of the representations of the requirements. [Ref. 26]

3. NPS

Researchers in the Software Engineering Track of the School's Computer Science Department

have developed a CASE tool to aid in the elicitation and management of requirements using prototypes.

The tool is called Computer-Aided Prototyping System (CAPS). It promises to reduce the amount of time

it takes to develop a system by various means that involve user participation in the development of

prototypes. [Ref. 27, 10] The researchers at NPS have significantly increased the software engineering

community's understanding of the benefits provided by using prototypes. The following quote succinctly

describes the potential benefits provided by the school's research with CAPS:

Traditional [software life cycle] approaches to software development produce

working code only near the end of the process. When utilized during the early stages of

the development life cycle, rapid prototyping allows validation of the requirements,

specification and initial design before valuable time and effort are expended on

implementation software [Ref. 28:p. 77].

D. SUMMARY

This chapter described three primary requirements analysis paradigms, Object Oriented Analysis,

Analysis Using Prototypes, and analysis using Use-Cases. FLARE Teams will use all three paradigms in

their requirements engineering efforts.

DISA and NRL are two organizations within DoD that have established a requirements

engineering capability. DISA is involved in the management of the requirements of major software

systems such as GCCS and the DII COE. NRL has developed a formal requirements engineering method,

the SCR method, that promises to contribute the community's efforts to reduce failures of software systems

by eliminating ambiguity in the specifications of requirements.

10

The Naval Postgraduate School is developing CAPS. When finished, this tool will enhance the

requirements engineering capability of the software engineering community.

11

12

HI. A REQUIREMENTS STABILIZATION COURSE OF ACTION

A. INTRODUCTION

This chapter recommends a feasible course of action that would reduce changes to requirements

caused by the turnover ofDoD decision-makers.

The crux of this course of action is the formation of permanent requirements engineering teams

composed of military officers by each of the geographic and functional commanders in chief (CINCs).

These teams will conduct requirements engineering for all software projects in the CINCs' command.

They also will provide command, control, communications, and computer systems (C4) advice to the

commanders [Ref. 29].

Involvement of the Front Loaded Accurate Requirements Engineering (FLARE) Team in the

development of a C4 system begins as soon as a commander identifies a need that is potentially solvable by

automation. The team will conduct requirements engineering within the command, and it will engineer

interoperability requirements.

The Team will make extensive use of Internet technologies, prototyping tools, and computer-

assisted software engineering tools, some of which are describe in Chapters IV and V.

B. WHY A FLARE TEAM IS NEEDED

In the DoD, it takes several years to develop and acquire a software system [Ref. 30:p. 70]. Ifwe

assume that most organizations change commanders every two years, we find that the commander who

identified the need to develop a C4 system will rotate out of his or her position before the first version is

delivered for evaluation.

This turnover is a primary reason why requirements change. Each new commander may apply

existing doctrine differently to accomplish the command's mission. These differences in operational

techniques cause requirements to change. Although the need of a software system is articulated in a

"Missions Needs Statement" and an operational requirements document is prepared [Ref. 30], successors of

the originator of a software system still may lack complete knowledge and specific insight as to why a

13

system was developed. Hence, a new commander may have a difficult time assessing the effectiveness of

delivered software systems that were initiated by his or her predecessors.

Traditionally, the DoD relies on a command's staff to overcome the transitional problem described

above. However, two factors make it difficult for staffs to provide new commanders with adequate advice

in the area of extended software system development. First, staffs are also affected by high turnover, which

erodes institutional knowledge. Second, staffs may lose focus on developmental software systems because

the workload associated with meeting the requirements of day to day operations leaves little time to

manage the requirements of developmental software systems.

The acquisition community is addressing some of these problems by adopting new acquisition

methods and by reducing the time it takes to deliver products to system stakeholders; people who interact

with or are affected by a system. The DoD's use of Integrated Product Teams in the acquisition process is

a step in the right direction because the user is represented at essential decision meetings.

The trend in the DoD towards streamlined acquisition and the use ofbest industry practices

requires a fundamental change in the way we conduct requirements engineering. Our leaders "must get

personally involved in understanding the relative costs, benefits, risks, and returns associated with

information technology investments they are making decisions about". [Ref 31] FLARE Teams will

facilitate this.

C. FLARE TEAM MISSION AND COMPOSITION

We propose the DoD take further actions than those outlined above and use FLARE Teams to

accomplish the requirements engineering tasks associated with the development of software intensive

systems. This team would support CINCs and system stakeholders by compressing the requirements

engineering phase, by providing institutional knowledge of developmental software systems, and by

conducting requirements engineering for the command. This team is the embodiment of the three reasons

why software systems succeed: "user [stakeholder] involvement, executive management [CINCs] support,

and a clear statement of requirements" [Ref. 32].

14

1. Team Mission

The FLARE Team will perform all requirements engineering functions for the command; provide

advice to the commander on C4 system issues; and represent the command in the "Integrated Product and

Process Development System [(IPPD)]" [Ref. 33].

2. Team Composition

The team will consist of eight officers. This quantity is consistent with traditional team sizes used

in DoD. When the number of automated systems within a particular command is too large for a team of this

size to effectively manage the command should either recursively form additional teams to satisfy

requirements engineering demands or temporarily increase the number of members on the team to meet the

excessive demands.

An officer with the rank equivalent to a Lieutenant Colonel will lead the team. An officer of this

rank possesses significant knowledge of the problem domain and has developed leadership skills that will

allow the officer to effectively lead and mentor the other team members. Additionally, once this course of

action is institutionalized within the DoD, an officer of this rank will have served on a FLARE Team as a

Major or Lieutenant Commander, which likely would enhance the officer's ability to lead the FLARE Team.

Majors and Navy Lieutenant Commanders will fill the other seven positions. Officers of this rank

have worked in various areas of the problem domain for several years and have attended their respective

service's developmental schools. The possession of these two qualities, experience and formal military

education, allows them to understand problem domain concepts more easily than civilian contractors.

Each member must have an advanced degree in software engineering. In general, the lack of such

formal software engineering education would prevent team members from effectively conducting

requirements engineering. Requirements engineering is a complex activity requiring the application of

scientific principles to the elicitation, communication, and management of requirements [Ref. 4]. The

possession of an advanced degree would enable team members to apply the needed scientific principles.

D. METHODS USED BY THE FLARE TEAM

The Team will use a combination of the traditional requirements engineering paradigms described

in Chapter II of this thesis. The team will use a requirements engineering tool (FLARE) designed

15

specifically for the proposed FLARE Team's use to communicate and manage the requirements of a

command's software systems. A thorough description of this tool is provided in Chapter V of this thesis.

E. FLARE TEAM'S ROLE IN THE SOFTWARE ACQUISITION SYSTEM

1. Team's Interaction with the Problem Domain

The first stage of requirements engineering is the elicitation of requirements from the problem

domain. This is a primary function of the FLARE Team. The Team begins this process as soon as a CINC

identifies a need to develop a software system. The FLARE Team will write the Mission Needs Statement

(MNS) that formally identifies an existing or future deficiency within the command that may affect the

command's ability to accomplish its mission [Ref 34]. It will present a briefing to the commander

detailing the MNS and providing an initial assessment of the systems, equipment, and personnel needed to

meet the new need. While preparing this briefing, the team will explore the possibility of satisfying the

need using existing GOTS systems. Throughout the entire process the team must record and place

requirements in an understandable format. The Team will validate these requirements with all

stakeholders. The team will record which constituency supports each requirement and the consequences to

be expected if the requirement is not met. This will assist the CINCs in making costs versus benefits

decisions.

CINCs are members of the problem domain and are responsible for deciding which software

systems their commands will purchase using their commands' operational funds. Additionally, they can

influence what Acquisition Category I, n, and III programs [Ref. 34] are approved. When appropriate,

FLARE Teams will provide information briefings to their CINCs detailing the advantages and

disadvantages of the software systems under procurement consideration at the Defense Department level,

which would enable CINCs to make more informed recommendations to the Defense Acquisition Board

[Ref. 35].

2. Team's Interaction with Program Managers (PM)

This course of action maintains the current focal point for the acquisition of software systems: the

PM. FLARE Teams will work closely with PMs. For new projects, the Team will provide the PM with the

16

initial database of requirements that the team has elicited from the problem domain. The Team will also

give the PM the preliminary operational requirements document that they have produced.

Programs that affect multiple geographic and functional CENCs will require additional

coordination on the part of the PM because each FLARE Team will have elicited a unique set of

requirements from their respective commands. This may appear to be a duplication of effort, but it is not.

Each CINC has a unique mission; therefore, it is likely that each FLARE team will produce a different set

of requirements. The PM need only take the union of all the sets of requirements produced by the different

FLARE Teams to identify the total requirements of all the commands affected by the new program. The

intersection of all the sets of requirements will give the PM an indication of the most important

requirements, assuming that each CINC's requirements are of equal importance.

Typically, program managers' main concern is the development and acquisition of systems on

time and within budget. FLARE Teams will play a crucial role in helping program managers achieve this

by acting as a requirements stabilization mechanism for the project. FLARE Teams will brief new CINCs

on the status of each software system under development that will affect their command and the logic

behind the previous CINC's decision to support their development.

FLARE Teams will represent their commands in all matters concerning software requirements.

When a cost versus benefits decision must be made the FLARE Team will give the CINC a detailed

briefing describing the situation. [Ref. 36]

3. Team's Interaction with Integrated Product Teams (IPT)

Time and personnel permitting, each IPT [Ref. 33] will have a FLARE Team member on it that

will ensure issues concerning requirements are recorded and addressed. When the number of EPTs formed

to address software system acquisition issues becomes too large for the Team to place a representative on

each the Team will provide representatives to the most important EPTs. We do not mean to imply that we

view the IPT process as unimportant; rather, we simply recognize the fact that it may be impossible to

provide full representation.

4. Team's Interaction with Developers

17

The FLARE Team will coordinate all developer activities within the command. Develops'

requirements questions will be answered by the Team and the Team will ensure requirements are satisfied

by delivered systems.

During the maintenance and evolution phases of a software system the FLARE Team will

continue to manage requirements and assess the amount of progress made by maintainers and evolvers.

F. SUMMARY

This Chapter presented a course of action designed to stabilize requirements of software systems

developed by CINCs, which will reduce the number of failed software systems in the DoD. The course of

action relies on the formation of permanent requirements engineering teams consisting of eight officers, all

possessing advanced degrees in software engineering, and lead by an 05. Each CTNC will have one or

more FLARE Teams depending on the demand. The team's mission is:

The FLARE Team will perform all requirements engineering functions for the

command, provide advice to the commander on C4 system issues, and represent the

command in the IPPD System.

The integration of this team, as the decision-maker's representative, into the acquisition

process would enhance the effectiveness of the entire software development process by giving the

decision-maker the ability to make informed decisions and by providing a stable source of

information for developers.

18

IV. BRINGING THE PROBLEM DOMAIN TO THE IMPLEMENTATION DOMAIN

A. INTRODUCTION

This Chapter shows how FLARE Teams can use Internet technologies to enhance the

effectiveness of the set ofCASE tools [Ref. 37] used by the teams to manage requirements. They must

ensure that each requirement is satisfied in the implementation domain by an automated system [Ref. 15:p.

34]. Ideally, the set of requirements should be managed throughout the evolution of the system to provide

the rationale for the system's behavior [Ref. 38]. We show how to extend formal and informal

specifications with audio and video file representations of requirements [Ref. 39, 40]. This is valuable

because video allows developers to quickly gain a conceptual understanding of specifications, breaks the

mind numbing monotony often experienced when reading formal textual specifications and graphical

diagrams, and effectively provides an abstract representation of objects found within specifications.

Additionally, we demonstrate how Internet technologies can help managers improve their task

assignment methods by incorporating programmers' assessments of the difficulty of implementing software

components into the decision process. The products produced by the FLARE Teams are used to make this

possible.

B. CASE ENSTRONMENT ENHANCEMENT USING INTERNET TECHNOLOGIES

The number of computer aided software engineering tools and environments available to assist

FLARE Teams is extensive. Queen's University in Kingston, Ontario publishes a partial CASE tool list

that has nearly 400 tools listed [Ref. 41]. We use a small subset of available CASE tools, those commonly

used at the Naval Postgraduate School, to illustrate how we can enhance a CASE environment with Internet

technologies.

Researchers at the Naval Postgraduate School have developed a CASE tool called Computer-aided

Prototyping System (CAPS) [Ref. 10]. This tool provides a capability to develop prototypes using the

prototype system description language (PSDL) [Ref. 42]. Once completed, CAPS promises to provide a

robust environment that will facilitate the management of requirements throughout the life of a system.

19

By design, the prototypes produced using CAPS are demonstrated to users. Users evaluate the

prototypes, and developers use the information obtained from the user's evaluation to refine the

requirements of the software system [Ref. 43]. Intuitively, it seems that CAPS would produce the best

results if a developer personally presented a prototype to a user, but this would be expensive in terms of

travel and set up time, especially if multiple meetings between a developer and user were needed. By using

audio and video conferencing techniques over the Internet, similar to those described by Macedonia and

Brutzman [Ref. 44], we can remove this limitation. Additionally, the developer's ability to interact with

the user at any time, provided the user has access to an Internet enabled computer with video conferencing

capabilities, likely would enhance the engineering environment created by CAPS and tools similar to it.

This enhancement would be achieved by allowing the developer to resolve ambiguous requirements with

users while they are still actively involved in the process of developing a prototype or model. It also would

reduce the cost of travel by eliminating the requirement of having the developers and users co-located

during the presentation of a new or changed prototype. Applications exist on the market that make this

possible with a modest, under $1,000.00, investment in additional equipment and software [Ref. 45, 46].

The use of Internet video conferencing to augment a software-engineering environment is

available today; as are other Internet technologies that provide comparable enhancements. One of these

additional Internet technologies is "intelligent browsing" [Ref. 47]. It is now possible for a Software

Engineer to use intelligent agents to retrieve information from the Internet [Ref. 48]. These tools can aid

Software Engineers in their efforts to understand the problem domain and to find appropriate solutions to

requirements in the implementation domain. It seems that a software engineering environment enhanced

with intelligent agents and Internet video conferencing would significantly increase a Software Engineer's

ability to produce quality software in a timely manner.

C. AUGMENTATION OF FORMAL AND INFORMAL SPECIFICATIONS WITH VIDEO

Where appropriate, FLARE Teams will augment requirement specifications with video

representations of the requirements. This would be helpful because certain requirements can be better

understood by developers if they can watch users during the performance of the activities that generate the

requirements [Ref. 39]. For example, most software developers are not experts of infantry fighting

20

procedures and have no concept of the actual tactics, techniques, and procedures used by infantry forces to

accomplish their assigned mission. This lack of understanding of the problem domain is further

complicated by preconceived ideas formulated by software developers as they are exposed to the

entertainment industry's dramatization of infantry soldiers and their fighting techniques. Problem domain

objects and concepts such as foxhole, field of fire, accurate, timely, and cover have very specific meanings

to infantry soldiers. Typical Software Engineers do not necessarily share these meanings. Software

Engineers can represent each of them with formal or informal methods. However, would a Software

Engineer located in Silicon Valley, when given a formal or informal representation of the requirements

elicited from this problem domain, be able to design a system that would satisfy the needs of the user

without direct knowledge of the user's context? The requirements produced from this type of problem

domain, a domain that is foreign to most Software Engineers, is an ideal situation to use video to augment

requirements. In this section, we show how the addition of a type "video", similar to that of a textual

comment, to formal and informal specification and design languages will increase developers

understanding of the problem domain.

1. The New Memory Paradigm

In the use of video to augment the representation of requirements, we would like to have easy and

quick access to it. The cost of existing magnetic storage has recently dropped to affordable levels, making

storage of video on fast hard disk drives feasible. Figure 3 depicts the dramatic reduction in memory prices

that have taken place during the ten-year period between 1987 and 1997. It is now economically feasible to

augment requirement specifications with video that is retrievable by anyone in the software development

group on demand. This capability is the crux of bringing the application domain to the design and

implementation domains. Another storage technology, digital versatile disk (DVD), introduced to the

masses in 1997 provides additional space to store audio files [Ref 49].

The same technology that allows analyzing "a golf swing from up to nine different camera angles"

[Ref. 50] can be used to provide on-demand video to increase software and systems developers'

understanding of the problem domain. Adding a type "Video" to specification and design languages

provides an easy way to incorporate the use of video into the software engineering process.

21

O RAM Storage Per MB

S400.00

S300.00

S200.00

S100.00

S0.00

$399.80

S20.00

SI 5.00

SI 0.00

S5.00

S0.00

I 1 Hard Drhg Storage Per MB
$19.95

$9.95

$0.15 $0.02

1987 1992 1997 2002?

Figure 3. Dropping Memory Prices. In 1987, the Cost of Secondary Magnetic Storage, Hard Drives,

was about $20.00 a Megabyte (MB) [Ref. 51 :p. 89], and Primary Memory, Random Access Memory
(RAM), was about $400.00 a MB [Ref. 52:p. 309]. In January of 1992 this Dropped to about $10.00 a

MB for Hard Drive Storage and $42.00 a MB for RAM [Ref. 53:p. 356]. In January of 1997, both

types of Memory were at an all-time low. Hard Drive Storage Sold for about $.15 a MB [Ref. 54:p.

152], and RAM for about $10.00 a MB [Ref. 55:p. 153]. The prices shown for the year 2002 are

based on a 30% yearly reduction in memory prices [Ref. 56]

2. Augmentation of Specification and Design Languages with Video

We use the Spec Language [Ref. 15] to illustrate how FLARE Teams would incorporate video

into the development process. There are two ways to use video with Spec. Both require that the Spec

model be saved in HTML format [Ref.57] and the use of an Internet browser to access the model.

The first way to utilize video is to include a comment anywhere in a Spec model stating that a

video clip is available; hyperlinking this comment to the video clip. This is attractive because it allows the

designer to quickly augment a model with the ease of using comments. Figure 4 shows how to implement

DEFINITION bunker -- Concept for describing shelters. - - Click here to view video clip

INHERIT fortification - - The module "fortification" defines types security and cover.

END

Figure 4. We Have Added the Bold Text on the First Line. This Comment Is Linked

to A Video File Describing a Bunker.

22

this method. The other way to incorporate video is to define a new concept "hyperlink" and create

instances of type hyperlink when appropriate. Figure 5 shows the definition of concept hyperlink. Any

instance of this concept would be a hyperlink to some type of file, video in this case.

DEFINITION link - - Concepts for describing hyperlinks.

CONCEPT link: type - - The set of hyperlinks.

END

Figure 5. Definition of Concept Link.

D. PROGRAMMER INPUT INTO THE WORK TASKING PROCESS

Once designers have identified modules that require implementation, management must produce a

programmer work schedule [Ref. 58]. The products produced by FLARE Teams enable programmers' to

gain a better understanding of problem domain concepts and objects. This increased understanding makes

programmers' input into the module assignment process used by managers more valuable.

Each programmer knows their programming abilities and can estimate the time required to

complete a programming task. We show how managers can assign tasks to programmers based on these

estimates. To do this, we use Internet technologies to produce an interactive module evaluation

environment where each uncommitted programmer rates every unassigned module by perceived level of

difficulty.

This process allows managers to produce an optimal programmer work schedule. An optimal

programmer work schedule is a work schedule designed to minimize the cost of implementing all

unassigned modules. Cost is measured in terms of time, where a shorter implementation time is better.

We have developed an Internet form [Ref. 59] that uses a common gateway interface (CGI) script,

FormMail [Ref. 60], to capture programmers' assessments of tasks (Figure 6). The method used to gather

input requires that each programmer estimate the number of days it would take to implement the module

listed on the form. Each programmer is required to repeat the process until they meet one of the following

23

three criteria. They have identified a module that they can implement in minimal time, and the system

schedules the programmer to implement it; the programmer has evaluated all modules that have not been

scheduled; or management stops the process because they have determined a suitable working schedule.

Once the Send button is pressed, the input provided is automatically emailed to a central location

Spec Language Definition: -- VIDEO CLIP AVAILABLE

FUNCTION parse_find_flights

INHERIT airline_manager_command_formats_2_l

INHERIT airline_reservation_system_type_formats

MESSAGE (s: string) - - PRAGMA representation (string, text).

WHEN SOME (o d: airport ::

is_find_fiights C'Snd_flights"
||

s, o, d)

)

REPLY (b: boolean, o d: airport) -- SEE VIDEO
WHERE b = true, is_find_flights (s, o, d)

OTHERWISE REPLY (b: boolean, o d: airport)

WHERE b = false

END

Estimated

Number of

Days to

Implement

Enter Your e-mail Address:

Enter

Your
Personal

ID

Number

1

.5 C

l C

1.5 <~

2 C

2.5 <~ —3 r

4 C
iggj

5 C

Add Comments Here . .

.

;\

£ l£lfc!V.VVN,'^V.\VxV.X\V->V-.V %*.V >JW*VsA '.' v>V-Vv\V,\W.Vv.

I

Figure 6. Form Used to Capture Programmers' Assessment of the Time Needed to Implement a

Module. The Spec Language Definition Was Developed by V. Berzins [Ref. 15:p. 424).

where it is processed. Ideally, the scheduling process will be automated using techniques similar to those

of the Evolution Control System (ECS) [Ref. 61] with the addition of incorporating programmer input into

the system. The modified ECS can enforce various policies ranging from scheduling a task immediately if

a programmer estimates they can complete it in .5 days, to waiting until each programmer has evaluated all

modules in an attempt to develop an optimal schedule.

This system can be used to assess schedule risk. Modules with a wide variance in programmer

estimates are more likely to cause problems than the modules where most of the programmers agree on the

time it would take to implement.

24

This system gives managers the ability to collect additional information on their programmers.

For example, programmers' who continuously have a large variance between estimates and actual

implementation time may require additional training on understanding specifications.

Incorporating programmers' assessments into the process also allows management to assign tasks

to programmers in a way that takes advantage of each programmer's personal knowledge base. That is,

each programmer has a class of problems that they can easily solve due to their accumulated experiences

and habits. Incorporating their input into the module scheduling process seeming would increase their

productivity because they would be assigned modules based on their completion time estimates.

Additionally, this system can be utilized to focus recruiting efforts. Consider a situation in which the entire

set of programmers rated tasks C, D, and E as taking the maximum allowable time to implement.

Management could focus their recruiting efforts on finding individuals that rate these tasks as taking

minimal time to implement, thereby increasing the efficiency of the entire organization and minimizing

costs.

E. SUMMARY

FLARE Teams can enhance the understanding of the problem domain by using existing Internet

technologies. These technologies also provide a means to enhance CASE environments. Internet video

conferencing, on-demand video, intelligent agents, and CGI scripts are some of the technologies that are

easily incorporated into a CASE environment.

Inexpensive memory and information storage makes it affordable to augment requirement

specifications with video representations of the problem domain. This enhances the entire development

process by providing another way to represent problem domain concepts and objects.

The use of Internet technologies by FLARE Teams and developers enhances the ability of

management to incorporate programmers' assessments of the difficulty of completing tasks into the

scheduling process.

25

26

V. FLARE: A REQUIREMENTS ENGINEERING ENVIRONMENT

A. INTRODUCTION

In the previous Chapter, we stated that traditional software engineering environments could be

easily enhanced using Internet technologies. We offer proof of this by introducing a CASE tool called

FLARE that uses the technologies presented in Chapter IV to create a distributed requirements engineering

environment. FLARE is designed to enhance the software development process by offering a means to

inexpensively manage requirements and facilitate communication of requirement related issues between all

interested parties in the software development process. The FLARE Team discussed in Chapter III would

use this tool.

B. FLARE'S COMPOSITION

FLARE is composed of several software programs that are coupled by electronic Internet mail.

This coupling produces a synergistic effect by combining the distinct features of each program to produce a

requirements engineering environment. The following programs create the FLARE environment. Each

contributes unique properties.

1. Microsoft's Access 97

This is an inexpensive database designed to function on Windows 95 or Windows NT. This

database makes it relatively easy to manipulate the requirements engineering information entered into the

FLARE environment. It also produces reports in HTML format. This enables users ofFLARE to easily

publish information that has been manipulated by database methods to the Internet. [Ref 62]

2. An Access Database File; FLARE.mdb

This database file contains the tables, queries, forms, reports, and macros that constitute the

management aspects ofFLARE. [Ref. 63]

3. An Electronic Mail File Parser; FLARE.exe

We developed this electronic mail file parser to extract only FLARE related information from an

electronic mail file. We wrote the parser in Ada 95. Appendix A contains the source code listing.

27

4. A Set of JavaScript Enhanced HTML Files

This set of files, when accessed with an Internet browser, creates the user interface for the FLARE

environment. The essential elements of these files are embedded JavaScript [Ref. 64] and Forms [Ref. 65].

JavaScript enables the pull-down menus found in the user interface to function. The ability to input and

transmit information is made possible by using Forms embedded in FLARE's HTML files. The source

code for the files is given in Appendix B.

5. A JavaScript Enabled Internet Browser

The browser is the shell that the user interface ofFLARE runs in. It must be JavaScript enabled to

allow the pull-down menus to operate. We used Microsoft's Internet Explorer [Ref. 62] and Netscape's

Communicator [Ref. 66] to test the user interface.

6. An Electronic Mail Program

This is the mechanism we use to implement the distributed properties of FLARE. Information is

submitted to a central location via electronic mail where it will eventually be converted into a format usable

by the database by the parser we described above. We used the electronic mail programs provided with

Microsoft's Internet Explorer and Netscape's Communicator.

7. FormMail

This CGI script running on NPS's Internet server was used to pre-format information submitted by

users using FLARE'S user interface. FormMail makes information entered into HTML Forms human

readable. It allowed the rapid development of the electronic mail parser described above.

C. FLARE'S USER INTERFACE

Figure 7 shows the initial user interface of FLARE. Each of the four pull-down menus represents

a phase in the software life cycle. Each menu shares the "Mission Needs Statement" option. We chose to

include this in each phase to emphasize the needs of the customer. The arrow between the

"REQUIREMENTS" and "DESIGN" menus symbolizes communication between the two phases in the

form of requirements specifications. The arrow between the "DESIGN" and "IMPLEMENTATION"

phases symbolizes communication between the phases in the form of a formal or informal design

specification. The arrow between the "MAINTENANCE" and "REQUIREMENTS" phases symbolizes

28

Front

Loaded

Accurate

jReQTJIREMENTS

Engineering

FOR MORE
INFORMATION
CLICK HERE

REQUIREMENTS

I%
DESIGN MAINTENANCE

I%
IMPLEMENTATION

"Requirements engineering is the disciplined application of scientific principles and techniques for

developing, communicating, and managing requirements''^ 68)

FIGURE 7. FLARE User Interface.

the transition caused by new or changing requirements. The "TESTING" icon in the center of the interface

with arrows radiating in the four directions symbolizes the testing that must be built into each phase of the

development cycle.

We describe the functionality of each menu option in the following subsections.

1. Requirements Pull-Down Menu

a. Enter Requirement

This option allows a Software Engineer to input a new requirement into the FLARE

environment. Figure 8 shows the format of the form. The four link fields at the bottom of the form are

provided to allow FLARE Team members to include logical links to video or other file representations of

requirements. For example, if an engineer entered a requirement that contained the problem domain object

foxhole, and the engineer had a 30 second video clip of a foxhole, then the engineer could add a comment

in the requirement indicating that a video file of a foxhole was available at link 1 . We choose to label these

fields 'links" because the FLARE Team could use file types other than video to augment the requirements.

29

Cntcc X New Requiceaent Hecc . -

.

.

b3

u^, (none

I
]NONfc

i^l.3 (NOME

i^n JNONE

FIGURE 8. Requirements Entry Form.

b. View Requirements

This option allows engineers to view all approved requirements. Figure 9 shows the

HTML page that the database generates automatically when given the "Save as HTML" command found

on the menu bar of the Access database.

c. Ask a Req. Question.

This option allows a way to input questions about requirements into the FLARE system.

It is similar in appearance to the form in Figure 8. Upon execution of the FLARE database program, the

Requirements
ID

date

601

4/10/97

llnka

*ngin«*rlD 1

n»QLj>r-.m»ni Thi* (yam Will *ll»w

ID 003
4/10/97

llnKI

r»qui p»m»rtt Ikta «y*»wUl fcllow f

«o*ww* ockMO xa tmOUHf I

odtwv* «riC3r-«T(lo ncnot* ly »-t*w »11

nucr, *pxn is, 1*97

Fust Previews Next L»st

Figure 9. Database Generated HTML Page.

question is automatically imported into the database where a FLARE Team member using the form shown

in Figure 10 can answer it.

30

U=! req_questions

date.--
'

•

r
- irijgjijiiM.^

smaRapdrsss ..

n.th» ctint«xt ofthis rw»»^i^d!i^«wWBnt:tb«l«FmiiQbd«tOT»«n».tfe»tlh# o**r^

ifTiutimwo«3yww <n*brm«tion combined, ir* <thft.pubS*> portion »?f#w.*y3t«ro,-.

"- IU ' " _ ' » H.I ..1 i

.
i '

Figure 10. Question Response Form.

d. View Requirements Questions

This option allows users to view questions that have been asked along with the answers

provided by engineers using the form shown in Figure 10.

e. Mission Needs Statement

This option allows engineers to review the mission needs statement that prompted the

development of the software system.

2. Design Pull-Down Menu

a. Enter Specification

This option allows a Software Engineer to input a specification that satisfies a

requirement. Figure 1 1 shows the format of the form used. Note the fields labeled "Requirement ID."

These fields facilitate requirements management. When a specification is entered into the system, the

engineer should also enter the requirements that are associated with the specification. The link fields on the

form enable engineers to enter informal design specifications into the FLARE environment. An engineer

would enter a comment in the text area of the Specification Entry Form indicating that a hyperlink to a

graphical model or specification exists. An informal specification would likely be in the form of a

graphical model such as those found in the Unified Modeling Language [Ref. 19].

31

; Enter a New Specification Here... 23 Enter
Your

~3§j Personal
=„ ID
1—'• Number

1

f

H
~s«^d~)

: R<5«K5t]

ilM^ss^s^^yi^^^^^H^^^^s^ss^sS^s^g^jfiHl3Ki

Enter Associated Requirements and Additional Links:

Requirement ED: |NONE [link 1:

Requirement ID: |NONE Link 2: NONE

Click Here To See Example

Figure 11. Specification Entry Form.

b. Remaining Menu Options

The menu options View Specifications, Ask a Specification Question, View Specification

Questions, and Mission Needs statement are very similar to those found in subsection C-l above and do not

require further explanation.

3. Implementation Pull-Down Menu

a. Enter Estimates

The functionality of this option is thoroughly described in Chapter IV, Section D.

b. Remaining Menu Options

The menu options View Specifications, View Requirements, Ask an implementation

Question, View Implementation Questions, and Mission Needs statement are very similar to those found in

Subsection C-l above and do not require further explanation.

4. Maintenance Pull-Down Menu

a. Enter a Bug Report

This option allows a Software Engineer to input an error found in the implementation into

the flare system.

32

b. Enter Change Request

This option allows a Software Engineer to input a new or changed requirement into the

FLARE environment.

c. Remaining Menu Options

The menu options View Bug Reports, View Change Requests, Ask a Maintenance

Question, View Maintenance Questions, and Mission Needs statement are very similar to those found in

subsection C-l above and do not require further explanation.

D. ELECTRONIC MAIL PARSER

We developed a parser that identifies a FormMail formatted message randomly placed in a text

based electronic mail file. The parser places pertinent information contained in the message into an

appropriate temporary text file in a format that is readable by FLARE 's database program. The temporary

file in which to place the information is selected based on the type of message found in the mail file. The

Parser is executed automatically by the Access database each time the database is started or when an

engineer executes the importation routine from within the database to update the records. Appendix A

contains the commented source code for the parser.

E. FLARE DATABASE

The database portion ofFLARE's environment is implemented with Microsoft's Access database.

The conceptual schema for this database is shown in the entity relationship model [Ref. 67] in Figure 12.

The data requirements of the FLARE system are the storage of user needs and limitations, the storage of the

required software system capabilities needed by users to solve their problems, and the storage of

implementation domain information. The required implementation domain information consists of storage

of engineer, programmer and design information. FLARE draws a distinction between programmers and

engineers because they perform completely different functions and have different responsibilities.

This structure supports FLARE Teams by providing a means to manage the information gathered

during requirements elicitation. Users have needs, and FLARE Team's are responsible for determining the

requirements of software systems that will satisfy these needs. Programmers and other engineers will use

33

the products produced by FLARE Teams and stored in the FLARE database to accomplish their respective

tasks.

FIGURE 12. Entity Relationship Model.

1. Scheduling Algorithm

We developed and implemented a scheduling algorithm that automatically assigns tasks to

programmers. The algorithm uses programmer's estimates (see Chapter IV-D) of the difficulty of

translating a design specification module into a programming language implementation. The algorithm

uses a greedy strategy [Ref. 68:p. 329]. It picks the lowest estimated time to implement a module and

assigns that module to the programmer who made the estimate. The algorithm fails to produce optimal

results in all cases, yet provides a close approximation. We find this acceptable knowing that the heuristic

in which the algorithm determines a schedule is based on imprecise estimates. The queries that are listed in

subsection D-3 constitutes the pseudo-code for this.

34

2. Database Tables

The database has the following tables. Information is entered into the tables automatically using

the information created by the parser describe above.

a. Table: assigned_modules

This table contains the results of the scheduling algorithm that is implemented using the

six queries described in section D-3.

b. Table: bugReport

This table is a collection of all bug reports.

c. Table: changeRequest

This table is a collection of all change requests.

d. Table: engineers

This table is a collection of all engineers working on a project. The primary key of this

table also serves as the individual identification number for each engineer.

e. Table: estimates

This table is built using a query and has unique estimates. This makes it different from

the importedestimates table that likely contains duplications. For example, a programmer may mistakenly

submit an estimate several times. This table lists the estimate only once, whereas the importedestimates

table lists each estimate submitted.

f. Tables: Questions

The evolution_questions, implementation_questions, maintenance_questions,

design_questions, and req_quesrions tables store the questions submitted by various parties using the

FLARE user interface. The tables also contain the answers to the questions.

g. Table: importedjestimates

This table contains all the estimates submitted by programmers. This table is used by the

scheduling algorithm to build the assigned_modules table.

h. Table: importedjrequirements

This table contains all the requirements submitted by engineers.

35

i. Table: information_requests

This table stores all information requests submitted by users of the FLARE system.

j. Table: MNS

This table contains the mission needs statement (MNS) that is the basis for the project

being managed by the FLARE Team.

k. Table: modules

This table contains the modules that have been approved by the project's manager. Each

record in the table is a refined specification entered by some engineer using the FLARE user interface.

Each entry in this table is an approved module. The scheduling algorithm uses this table to develop the

assigned_modules table.

1. Table: programmers

This table is a collection of all programmers working on a project. The primary key of

this table also serves as the individual identification number for each programmer. Programmers enter this

identification number to provide a means to verify input submitted using the HTML Forms described

above.

m. Table: specification

This table contains the raw specifications entered by engineers using the FLARE user

interface. Managers and designers refine the specifications contained in this table and place the refined

specifications in the modules table.

3. Database Queries

The database contains six queries that implement the scheduling algorithm described above.

a. Query: Remove duplicate estimates query

This query eliminates duplications from the imported_estimates table.

b. Query: update matched estimates

This query changes the assigned and committed fields of all records in the estimates

Query table to yes. We do this to prevent programmers and modules from being assigned multiple times.

36

c. Query: estimate Query

This query builds a temporary list of unassigned programmers and modules that the

assigned_Q query uses to match modules to programmers using the greedy strategy.

d. Query: assigned_Q

This query builds the assignedmodules table, which is the output of the scheduling

algorithm.

e. Query: modules Without matching assignedmodules

This query identifies the modules that we marked as being assigned, but were not

scheduled by the assigned_Q query. This happens because we only allow a programmer to work on one

module at a time.

f. Query: update unmatched modules

This ensures all unassigned modules are marked as such.

4. Database Forms

We use the "import_data_form" to solve timing problems caused by the underlying operating

system. For unexplained reasons, there is a noticeable delay in closing the temporary files created with the

FLARE parser. This problem forced us to delay the importation of data into the database. We chose the

timing mechanisms associated with Access' Forms to accomplish this. The form also acts as the driver that

initiates the macros that automate the importation of information created by the FLARE parser. The

remaining forms were designed to provide users of the database a more pleasing interface than that

provided by the tables.

F. FLARE COMPARED TO OTHER DISTRIBUTED ENVIRONMENTS

We compare FLARE to the Dynamic Object-Oriented Requirements System (DOORS) and the

Web Integrated Software Environment (WISE). DOORS is a mature requirements engineering tool

designed specifically for requirements engineering. It provides a good base to assess the effectiveness of

FLARE. WISE is a developmental tool that exploits Internet technologies to assist in the management of

systems development. It provides a good base to assess the distributed aspects ofFLARE.

37

1. DOORS

This is a full featured and comprehensive requirements engineering CASE tool capable of running

in both the UNIX and personal computer environments [Ref. 69]. FLARE is a much simpler system and

currently lacks the requirements tracing features of DOORS, as well as other features you would expect

from a commercial tool. However, because FLARE uses Microsoft's Access 97 to implement its database

functions, it has the full-featured power of a relational database and seamless compatibility with

Microsoft's Office programs. Using Access, FLARE potentially can be developed to match the

functionality of DOORS. Both DOORS and FLARE have the capability of importing requirements

information from any text source.

2. WISE

This is an Internet based project management tool under development at West Virginia University

[Ref. 70]. FLARE and WISE are similar in that they both use HTML Forms and a database to store

submitted information. They both publish information for users to view. There are two major differences

between the two tools. First, WISE runs on an Internet server and uses an online database. This gives it

the ability to provide near real time data updates. FLARE can only update data with human intervention.

Secondly, WISE offers online publication of project metrics. FLARE lacks this capability. The advantage

FLARE has over WISE is the ease in which the environment can be established. Anyone with an electronic

mail account and Access 97 can use FLARE, provided FormMail is installed and configured properly on

their Internet Server.

G. SUMMARY

This Chapter introduced the new CASE tool FLARE. FLARE is a software-engineering

environment created by using several distinct programs tied together with electronic mail. We described

the Internet based user interface, the parsing program, and FLARE'S database that is implemented with

Microsoft's Access relational database. We demonstrated how information is entered and retrieved from

the system. Finally, we compared FLARE to WISE and DOORS, which are distributed software

engineering CASE tools possessing far greater functionality than FLARE.

38

VI. CASE STUDY

A. INTRODUCTION

This case study is designed to show how DoD Software Engineers working in conjunction with

contracted Software Engineers would use the FLARE CASE tool to aid in the development of a distributed

requirements engineering environment. The other tools used in this case study are the modeling tool

Rational Rose [Ref. 71] and the programming tool ObjectAda [Ref. 72].

The methods, techniques and tools presented in this case study are applicable to purely in-house

development projects, purely contracted development projects or a combination of the two.

B. MISSION NEEDS STATEMENT

The event that initiates the software development process is a mission needs statement developed

by some commander in the DoD. The mission needs statement that triggered the development of our

requirements engineering environment is:

Warfighters need assistance managing the requirements of their software

systems. The ability to enter information into the system and retrieve this information

from remote locations is also needed. Finally, there is a need to save money, so this

system needs to be developed using existing software and hardware.

The command's software engineering team assisted in the development of the mission needs

statement. Once the commander approved the MNS statement, the FLARE Team entered the MNS into the

FLARE environment (Figure 13). One advantage of using Microsoft's Access is the ability to use the

"jlnftwfnatton from twndte locaitiort* te-«feo jie«d»d. .
Ffrt*}[y>th»rtt^» i

lo saw Tnon»yv »o lh»» jystom i»e«i» to b* d»Y»)op«<J uting e*&Srig'.}

[software ond ftanSvarc

ugii-~-i-»ri^^3§BBHi -kjzsS
I;.

Figure 13. Mission Needs Statement Form.

39

clipboard feature to cut from one application and paste it into another. We used this technique to enter the

mission needs statement into the MNS Form found in FLARE's database.

C. REQUIREMENTS IDENTIFICATION

The FLARE Team performed requirements elicitation and identification activities. Team

members' requirements perception was enhanced by their formal software engineering education and their

problem domain experience. The following are the initial requirements identified by the team.

1. Initial Requirements

a. The system will allow Software Engineers to remotely enter new requirements into

the database.

b. The system will allow Software Engineers to remotely view all approved

requirements.

c. The system will allow multiple Software Engineers to simultaneously enter and

retrieve information.

2. Requirements Entered Using a Form

The Software Engineers using the Internet browser user interface as shown in Figure 14 enter the

requirements into the FLARE system. The FLARE system requires that engineers enter only one

The system will allow software engineers to remotely
enter new requirements into the database

.

Enter
Your

Personal
ID

Number
fl

—

.->^a^-g5MtuJWWMte^'r;r£=g
Enter Path of:

|Link l:|NONE

Link 3: |NONE

[link 2: |NONE

[Link 4: |NONE

FIGURE 14. Requirement Entered Into the Flare System.

40

requirement in a form at a time. This ensures that each requirement is given a unique identification number

used to track the requirement throughout the software development process.

D. SYSTEM DESIGN

The FLARE Team made an object model (Figure 15) of a prototype system that would satisfy the

O
REQUIREMENTS ENGINEERING SYSTEM

PARSER

O

USER

5

DATABASE INTERFACE INTERNET MAIL

ENGINEER PROGRAMMER

Figure 15. Object Model of Requirements Engineering System.

requirements elicited from the problem domain using Rational Rose. Rational Rose produces informal

models that are in graphical form. Graphic files can not be pasted into the text box found in the FLARE 's

user interface. Each of the FLARE input forms has fields that allow engineers to enter hyperlinks to

objects such as graphical object models.

Figure 16 shows how the design team used FLARE'S specification form to enter the hyperlink to

the graphical object model into the FLARE system. Notice that the link is to an ftp site. This will allow

anyone in the team to download the graphic file and view it using his or her copy of Rational Rose. This is

an example ofhow FLARE extends traditional software engineering environments. The same technique

41

A Rational Rose Object Model of the system is located
at link 1.

Enter
Your

Personal
ID

Number
1

Send I

Reset

I . ; <t . >
,'.'.\",V\"v^" W& v̂^

Enter Associated Requirements and Additional Links:

Requirement ID: 1 Link 1: ftp://ftp.nps.navy.miI/p
1

Requirement ID: A Link 2: NONE

Figure 16. A Specification Entry Form Used to Enter A Graphical Object Model.

the engineering team used to extend the environment of Rational Rose can be used to extend any

engineering environment.

Figure 17 shows another example ofhow the team used the specification entry form to enter a

specification into the system. This time the team defined a Spec Language definition of a function that

determines if a message contained in an electronic mail file is a valid. If the message is valid a true value is

returned. This function is the specification of an operation contained in the "PARSER" object found in

figure 15. The designer chose to include the requirements that the specification helps to satisfy, as well as a

hyperlink to the object model of the system that contains the "PARSER" object. Notice that the personal

ED field is not filled in. If the user were to press the send button with this field left blank, they would

receive an error message generated by FormMairs CGI script indicating that a required field was left

blank.

42

Spec Language Definition --Object model available

FUNCTION is_valid_message

INHERIT valid_mes3age_formats

MESSAGE (mail_file_string: string) REPLY (true: boolean)
WHERE true <=> mail_file_string IN valid_mes3age_formats

]

- This function implements a part of the parser found
- at link 1.

END is_valid_message

Enter
Your

Personal
ID

Number

Enter Associated Requirements and Additional Links:

Requirement ID: |1 Link 1: J
ftp://ftp.nps.navy.miI/p

Requirement ID: |2 JLink 2: [NONE

Figure 17. Specification Entry Form Used To Enter a Text Specification.

Programmers can begin to estimate how long they think it will take them to implement a module

as soon as the design team enters the first specification into the FLARE system.

E. IMPLEMENTATION

Figure 1 8 shows the FLARE form used by programmers to enter their implementation time

estimates. They use the FLARE user interface to browse the set of unassigned modules and are required to

estimate how long they think it would take them to implement each specification. Notice the bold text

"CLICK HERE" in the form. This is a link to the object model file containing the "PARSER" object. This

feature is provided to give the programmer additional information to use in order to make a better estimate

of the time needed to implement the specification. The design team used their Internet browser's HTML

editor to easily create the form shown in Figure 18. A designer accomplished this task in less than five

minutes.

Once idle programmers have completed their estimates, a manager uses FLARE to determine an

implementation schedule. FLARE generates a list showing the assignment of modules to programmers.

The database generates an HTML file depicting the assignments, which management can post to allow

programmers see what module they have been tasked to implement. The programmers in this case study

use the Ada 95 programming language to implement design specifications. They use the programming

environment created by OjectAda, and they augment this environment with FLARE.

43

By using FLARE, the programmers have access to all the requirements and specifications

associated with the module they are implementing. This allows them to find information about the module

that they have been tasked to implement if they encounter any ambiguities in the specification. The

Spec Language Definition —Object model available

FUNCTION is_valid_message

INHERIT validmcssage formats

MESSAGE (mail_file_string: string) REPLY (true: boolean)
"WHERE true <=> mail_nle_string IN valid message formats

— This function implements a part of the PARSER
-- CLICK HERE to view PARSER

END is_valid_message

Estimated

Number of

Dayi xo

Implement

.5 <~

1 <=•

1.5 <~

2 <~

2.5 r.

3 <~

4 <-

5 <~

1

i

Enter Your 1

Personal ID
Number

|

JS^tUl

&ffij«Rfj

Add Comments Here .

.

£g£
Figure 18. Programmer Estimate Entry Form.

FLARE environment also gives programmers the option of asking implementation questions. The

questions are imported into the database where management can review them in an effort to determine if

patterns exist that may indicate a need to improve one or more design processes.

F. MAINTENANCE

The maintenance phase begins after the system is delivered to the user. FLARE offers a means to

easily input bug reports into the system. This is accomplished using the Internet user interface. The

software engineering team and users use the Bug Report Form to input a description of any problems

found into the FLARE system. This allows engineers to easily access the complete record of bug reports.

The team uses the set of bug reports to help them find indicators of design errors, coding errors, or a

combination of the two.

G. NEW REQUIREMENTS ARE IDENTIFIED; THE SYSTEM EVOLVES

FLARE provides a way for users to input proposed changes into the system. This is a needed

feature because users will likely want to improve or add additional functionality to the software system.

44

A user accomplishes this by selecting the "Enter Change Request" option found under the

"MAINTENANCE" menu located on FLARE 's user interface. All change requests are imported into the

database. FLARE Teams use this information in their requirements engineering efforts. The

organization's commander would approve or disapprove any recommended changes because change

requests could alter or extend the original mission needs statement. Any approved changes would start the

development process over again: additional requirements would be identified, the design would be altered

and changes would be implemented.

H. SUMMARY

This case study showed how a team of Software Engineers could use FLARE to enhance

traditional software engineering environments, as well as assist in the management and communication of

requirements. The study started by showing how a mission needs statement is entered into the FLARE

system. We showed how FLARE easily extends the reach of Software Engineers by transforming them

from engineers working on isolated systems to engineers working in a distributed engineering environment.

FLARE is not a silver bullet that will cure the software engineering community's requirements

engineering problems. However, the case study shows that FLARE can enhance traditional software

engineering tools and environments. Its distributed features allow Team members to input and access

requirements information in real-time anywhere access to the Internet can be found. FLARE's use of

Internet technologies also allows all stakeholders and developers to participate in requirements engineering

activities. This likely will increase the quality of the requirements engineering process. This increased

quality is the factor that will likely cause a reduction in the number of changes in requirements caused by

CINC turnover. New CINCs quickly formulate opinions of the quality of personnel and systems within the

command. By involving stakeholders in the requirements engineering process, they are more likely to have

a positive view of the software system. Hence, they will communicate this positive view when they speak

to new CINCs.

45

46

VH. CONCLUSIONS AND FUTURE WORK

A. RESEARCH CONTRIBUTIONS

We developed a feasible course of action that DoD decision-makers can use while formulating

ways to reduce the number of unwanted, unneeded and unusable software systems. This course of action is

based on the formation of special staffs by each of the geographic and functional CINCs. These staffs

would be composed of military officers possessing advanced software engineering degrees. Their mission

would be to conduct requirements engineering for their command. We explained how these teams would

naturally and easily fit into the current acquisition process.

We developed the CASE tool FLARE. FLARE is a requirements engineering environment

composed of commercial off the shelf (COTS) and government of the shelf (GOTS) software tools tied

together by electronic mail and a parsing program that we developed.

B. SUGGESTIONS FOR FUTURE RESEARCH

1. Proof of Concept Experiment for the Special Staff

We suggest the identification of a CINC who is willing to implement the course of action detailed

in Chapter three of this thesis and that the results produced by the team be compared to results produced by

the methods used by the remaining CINCs. This research would accomplish two things. First, it would

assess whether or not the course of action provided in this thesis is worth pursuing. Secondly, the current

state of the software engineering capabilities of our major commands would be clarified.

2. Requirements Tracing Features

FLARE's requirements tracing features are primitive. Even though each requirement receives a

unique identification number, FLARE does not automatically track this requirement throughout the

development process, rather it relies on engineers "tagging" each new product with the appropriate

requirement identification number. Automation of this tagging process would eliminate possibilities of

entering incorrect tags, and could potentially allow engineers to look at any object produced in the

development process and extract the associated requirement information.

47

3. Report Generation Enhancement

Microsoft's Access database provides the ability to automatically generate HTML files based on

the information submitted by the software engineering team. These files are crude. Research to develop a

more sophisticated HTML file generator is needed.

4. Module Assignment Algorithm Enhancement

The greedy strategy used by the module assignment algorithm does not guarantee an optimal

solution. The development of an algorithm that would always produce an optimal solution is needed.

48

APPENDIX A. ELECTRONIC MAIL FILE PARSER SOURCE CODE

— Name: Main_FLARE_parser.adb
— Date: 29 March, 1997

— Author: Anthony E. Leonard
— Purpose: This program takes a Netscape mail file (Inbox) and
— parses it to extract information provided by programmers
— using a cgi script. It writes the required information to an
— output file, which is incorporated into a database.

with TextIO, Ada.Integer_Text_IO, variables, process_est_pkg, process_req_pkg;

use Text_IO, Ada.Integer_Text_IO, variables, process_est_pkg, process_req_pkg;

procedure FLARE is

— declare file objects to use in the processing of the input file

indata: FileType;

req_outdata: FileType; —file new requirements are added to

est_outdata: FileType; —file new estimates are added to

spe_outdata: FileType; —file new requirements are added to

bug_outdata: FileType; —file new estimates are added to

chaoutdata: File_Type; —file new requirements are added to

foutdata: File_Type; —file new requests are added to

requirements_questions_outdata: File_Type; —file new estimates are added to

design_questions_outdata: File_Type; —file new requirements are added to

implementation_questions_outdata: FileType; —file new estimates are added to

maintenance_questions_outdata: FileType; —file new requirements are added to

evolutionquestionsoutdata: FileType; —file new requests are added to

begin

— open the input file

open (File => indata, mode => InFile, Name => "C:\flare\inbox");

— create the output files

create (File => req_outdata, mode => Out_File, Name => "c:\flare\temp_req.txt");

create (File => estoutdata, mode => Out_File, Name => "c:\flare\temp_est.txt");

create (File => spe_outdata, mode => OutFile, Name => "c:\flare\temp_spe.txt");

create (File => bugoutdata, mode => Out_File, Name => "c:\flare\temp_bug.txt");

create (File => chaoutdata, mode => Out_File, Name => "c:\flare\temp_cha.txt");

create (File => f_outdata, mode => Out_File, Name => "c:\flare\temp_f.txt");

create (File => requirementsjquestionsoutdata, mode => OutFile, Name =>

"c:\flare\temp_req_questions.txt");

create (File => designquestionsoutdata, mode => OutFile, Name =>

"c:\flare\temp_design_questions.txt");

create (File => implementation_questions_outdata, mode => Out_File, Name =>

"c:\flare\temp_implementation_questions.txt");

create (File => maintenance_questions_outdata, mode => Out_File, Name =>

"c:\flare\temp_maintenance_questions.txt");

49

— Name: Main_FLARE_parser.adb (continued)

-- Date: 29 March, 1997

— Author: Anthony E. Leonard

— Purpose: This program takes a netscape mail file (infile) and
— parses it to extract information provided by programmers
— using a cgi script. It writes the required information to an

— output file, which is incorporated into a database.

create (File => evolution_questions_outdata, mode => OutFile, Name =>

"c:\flare\temp_evolution_questions.txt");

~ process the input file

while not End_of_File(File => indata) loop

—assume the next string is of interest

is_desired:= true;

get_line(file => indata, item => string_buffer, last => last_char);

—this strips a character off to expose the End of File symbol

get(file => indata, Item => nextchar);

—test to see if the line is larger than our deliminator

if Last_Char > sizel then

—check to see if the line contains our deliminator

fori in 1..sizel loop

if string_buffer(I) /= flag(I) then

isdesired := false; — the line was not of interest

exit;

end if;

end loop;

—if line was of interest then add input to the output file

if is_desired then

if string_buffer(size8) = ')' then

process_est (est_outdata, indata);

elsif string_buffer(size8) = 'R' then —process a requirement

process_req (req_outdata, indata);

elsif string_buffer(size8) = 'S' then —process a specification

process_req (spe_outdata, indata);

elsif string_buffer(size8) = 'B' then —process a bug report

process_req (bugoutdata, indata);

elsif string_buffer(size8) = 'C then —process a change request

processreq (chaoutdata, indata);

elsif string_buffer(size8) = 'F then —process a general information request

process_req (foutdata, indata);

— process questions

elsif string_buffer(size8) = V then —process a requirement

processreq (requirementsquestionsoutdata, indata);

50

— Name: Main_FLARE_parser.adb (continued)

— Date: 29 March, 1997

— Author: Anthony E. Leonard

— Purpose: This program takes a netscape mail file (infile) and
~ parses it to extract information provided by programmers
— using a cgi script. It writes the required information to an
-- output file, which is incorporated into a database.

elsif string_buffer(size8) = 'd' then —process a specification

process_req (design_questions_outdata, indata);

elsif string_buffer(size8) = 'i' then —process a bub report

processreq (implementation_questions_outdata, indata);

elsif string_buffer(size8) = 'm' then —process a change request

processreq (maintenance_questions_outdata, indata);

elsif string_buffer(size8) = 'e' then -process a general information request

process_req (evolution_questions_outdata, indata);

end if;

end if; — end adding information to output file

end if; — end checking the line

end loop; — all lines have been processed

exception

—this exception is allways raised because we removed the EOF special character

—with the get(file => indata, Item => nextchar); command above,

when End_Error =>

Put("You made it to the end of file : ");

close(File => indata);

close(File => est_outdata);

close(File => req_outdata);

close(File => spe_outdata);

close(File => bug_outdata);

close(File => cha_outdata);

close(File => foutdata);

close(File => requirements_questions_outdata);

close(File => design_questions_outdata);

close(File => implementation_questions_outdata);

close(File => maintenance_questions_outdata);

close(File => evolution_questions_outdata);

-create (File => chaoutdata, mode => Out_File, Name => "C:\program

files\netscape\users\Leonard\mail\inbox");

—close(File => cha_outdata);

end FLARE;

51

— Name: get_clip_pkg.ads

-- Date: 29 March, 1997

~ Author: Anthony E. Leonard

— Purpose: This program reads an input file, extracts information

~ from it, and writes the desired information to an output file.

with Text_IO, Ada.Integer_Text_IO, variables;

use Text_IO, Ada.Integer_Text_IO, variables;

package get_clip_pkg is

procedure get_clip (req_outdata, indata : File_Type);

end get_clip_pkg;

— Name: get_clip_pkg.adb

-- Date: 29 March, 1997

— Author: Anthony E. Leonard

— Purpose: This program reads an input file, extracts information

— from it, and writes the desired information to an output file.

package body get_clip_pkg is

procedure get_clip (req_outdata: in File_Type; indata : in File_Type) is

—declare a variable to use to strip delimiter from input string.

clip_holder : string (1..8);

begin

—strip delimiter.

get(file => indata, item => clipholder);

—read the hyperlink

get_line(file => indata, item => string_buffer, last => lastchar);

—place delimiter in the output file.

put(file => req_outdata, item => "A
");

put(" ");

Put(item => string_buffer(l..last_char));

put (File => req_outdata, Item => string_buffer(l..last_char));

end get_clip;

end get_clip_pkg;

52

— Name: process_dat_pkg.ads

-- Date: 29 March, 1997

— Author: Anthony E. Leonard

— Purpose: This program reads an input file, extracts information

— from it, and writes the desired information to an output file.

with TextIO, Ada.IntegerTextIO, variables;

use Text_IO, Ada.Integer_Text_IO, variables;

package process_date_pkg is

procedure process_date (outdata, indata : FileType; begin_date : integer);

end process_date_pkg;

-- Name: process_date_pkg.adb

-- Date: 29 March, 1997

-- Author: Anthony E. Leonard

~ Purpose: This program reads an input file, extracts information

~ from it, and writes the desired information to an output file.

package body process_date_pkg is

procedure process_date (outdata : in File_Type; indata : in File_Type; begin_date : in integer) is

begin

—process the delimiter of the date first,

fieldl :=1;

—extract date from input file and change format so it can

—be read by database program.

for I in begindatc.lastchar - 1 loop

case fieldl is

when 1 => month(index) := string_buffer(I); —strip delimiter

index := index + 1

;

if string_buffer(I) = space(l) then

fieldl := fieldl + 1;

index := 1;

month := "
";

end if;

53

Name: process_date_pkg.adb (continued)

Date: 29 March, 1997

Author: Anthony E. Leonard

Purpose: This program reads an input file, extracts information

from it, and writes the desired information to an output file.

when 2 => month(index) := string_buffer(I); —get month

index := index + 1

;

if string_buffer(I) = space(l) then

fieldl :=fieldl + l;

index := 1;

casemonth(l) is

when T
|

'j' =>

ifmonth(2) = A'then

month_number := 1

;

elsif month (2) = 'a' then

monthnumber := 1;

elsifmonth(3) = 'N'then

month_number := 6;

elsif month(3) = 'n' then

monthnumber := 6;

else month_number := 7;

end if;

when 'F
|
'f => month_number := 2;

when 'M'
|
'm' =>

ifmonth(3) = 'R' then

monthnumber :=3;

elsif month(3) = V then

month_number := 3;

else monthnumber := 5;

end if;

when A'
|
'a' =>

ifmonth(2) = 'P'then

monthnumber := 4;

elsif month(2) = 'p' then

month_number := 4;

else monthnumber := 8;

end if;

when 'S'
|
's' —> monthnumber := 9;

when 'O'
|
'o' => month_number := 10

when "N'
|
'n' => monthnumber := 1

1

when 'D'
|
'd' => monthnumber := 12

when others => null;

end case;

54

Name: process_date_pkg.adb (continued)

Date: 29 March, 1997

Author: Anthony E. Leonard

Purpose: This program reads an input file, extracts information

from it, and writes the desired information to an output file.

put(file => outdata, item => "A
");

put(month_number)

;

put(file => outdata, item => monthnumber);

put(7");

put(file => outdata, item => "/");

month :=

"

";

end if;

when 3 => day(index) := string_buffer(I); —get day

index := index + 1

;

if string_buffer(I) = space(l) then

day(index - 2) := space(l);

fieldl :=fieldl + l;

index := 1

;

ifday(2)/="then

put(day(day'first..2));

put(file => outdata, item => day(day'first..2));

else

put(day(l));

put(file => outdata, item => day(l));

end if;

put(7");

put(file => outdata, item => "/");

end if;

when 4 => year(index) := stringbuffer(I); —get year

index := index + 1

;

if stringbuffer(I) = space(l) then

fieldl := fieldl + 1;

index := 1;

put(year);

put(file => outdata, item => year);

put(" ");

—pad the date if needed

ifday(2) = "then

put(file => outdata, item => " ");

else

put(file => outdata, item => " ");

end if;

day := " ";

year := " ";

end if;

when others => null;

55

— Name: process_date_pkg.adb (continued)

— Date: 29 March, 1997

~ Author: Anthony E. Leonard
— Purpose: This program reads an input file, extracts information

~ from it, and writes the desired information to an output file.

end case;

end loop;

end processdate;

end process_date_pkg;

— Name: process_est_pkg.ads

-- Date: 29 March, 1997

— Author: Anthony E. Leonard

— Purpose: This program reads an input file, extracts information

— from it, and writes the desired information to an output file.

with Text_IO, Ada.Integer_Text_IO, variables, process_date_pkg;

use Text_IO, Ada.Integer_Text_IO, variables, process_date_pkg;

package process_est_pkg is

procedure process_est (est_outdata, indata : FileType);

end process_est_pkg;

56

— Name: process_est_pkg.adb

--Date: 29 March, 1997

— Author: Anthony E. Leonard

— Purpose: This program reads an input file, extracts programmer
— estimate information

— from it, and writes the desired information to an output file.

package body process_est_pkg is

procedure process_est (estoutdata : in File_Type; indata : in File_Type) is

begin

—process the date

process_date(est_outdata, indata, start_date);

skip_line(file => indata, Spacing => 2);

—get the programmer identification from the input file

get(file => indata, item => stripstringl);

get_line(file => indata, item => programmer_id, last => lastchar);

—write ED into the output file

put(" ");

put (File => est_outdata, Item => " ");

Put(item => programmer_id(l..last_char));

put (File => estoutdata, Item => programmer_id(l..last_char));

if fill 1 = last_char then Put(" ");

Put(File => est_outdata, item => " ");

elsif fill2 = last_char then Put(" ");

Put(File => est_outdata, item => " ");

elsif fill3 = last_char then Put(" ");

Put(File => est_outdata, item => " ");

elsif fill4 = last_char then Put(" ");

Put(File => estoutdata, item => " ");

end if;

—extract the estimated days to implement from the input file.

get(file => indata, item => strip_string2);

get_line(file => indata, item => daystoimplement, last =>

last_char);

Put(" ");

Put(File => estoutdata, item => " ");

put(item => days_to_implement(l..last_char));

Put(File => estoutdata, item => days_to_implement(l..last_char));

57

— Name: process_est_pkg.adb (continued)

-- Date: 29 March, 1997

— Author: Anthony E. Leonard
— Purpose: This program reads an input file, extracts programmer
— estimate information

— from it, and writes the desired information to an output file.

if fill 1 = last_char then Put(" ");

Put(File => est_outdata, item => " ");

elsif fill2 = last_char then Put(" *');

Put(File => est_outdata, item => "
");

elsif filB = last_char then Put("");

Put(File => estoutdata, item => "");

end if;

—get the module identification from the input file.

get(file => indata, item => strip_string3);

get_line(file => indata, item => specification_module_name, last =>

last_char);

put(item => specification_module_name(l..last_char));

Put(File => est_outdata, item =>

specification_module_name(1 ..last_char));

new_line;

new_line(file => est_outdata, Spacing=> 1);

end process_est;

end process_est_pkg;

— Name: process_req_pkg.ads

-Date: 29 March, 1997

— Author: Anthony E. Leonard

— Purpose: This program reads an input file, extracts a requirement

— from it, and writes the requirement to an output file.

with TextIO, Ada.Integer_Text_IO, variables, process_date_pkg;

use Text_IO, Ada.IntegerTextIO, variables, process_date_pkg;

with get_clip_pkg; use get_clip_pkg;

package processreqjpkg is

procedure process_req (req_outdata, indata : FileType);

end process_req_pkg;

58

~ Name: process_req_pkg.adb

-Date: 29 March, 1997

— Author: Anthony E. Leonard

— Purpose: This program reads an input file, extracts a requirement

~ from it, and writes the requirement to an output file.

package body process_req_pkg is

procedure process_req (req_outdata : in File_Type; indata : in File_Type) is

sizeofdelimiter : integer := 7;

number_of_clips : integer := 4;

delimiter : string (l..size_of_delimiter) := "zend: Z";

commentsholder : string (1..10);

endcommentsholder : string (1..20);

notend : boolean := true; —used to determine end of requirement

begin

—extract the date first.

process_date(req_outdata, indata, (startdate + 1));

skip_line(file => indata, Spacing => 2);

—get the number of video clips available,

for I in L.numberofclips loop

get_clip(req_outdata, indata);

end loop;

—get the programmer identification number.

get(file => indata, item => strip_stringl);

get_line(file => indata, item => programmerid, last => lastchar);

put(file => req_outdata, item => "A
");

put(" ");

Put(item => programmer_id(l..last_char));

put (File => req_outdata, Item => programmer_id(l..last_char));

—place a delimiter in the output file

put(file => req_outdata, item => "A
");

—mark the beginning of the requirement being extracted.

put(file => req_outdata, item => """");

get_line(file => indata, item => strip_string4, last => last_char);

—process lines until we reach the end of the requirement,

while notend loop

get_line(file => indata, item => string_buffer, last =>

lastchar);

59

— Name: process_req_pkg.adb (continued)

-- Date: 29 March, 1997

— Author: Anthony E. Leonard

~ Purpose: This program reads an input file, extracts a requirement

— from it, and writes the requirement to an output file.

— test to see if we are at the end of the requirements

if last_char = size_of_delimiter then

for I in l..size_of_delimiter loop

if string_buffer(I) /= delimiter(I) then

null;

else

not_end := false;

end if;

end loop;

end if;

— put the line in output file if not at end

ifnotendthen

— remove all " from the text

— this is required because ofhow the database determines

— what a character sting is. Replace each occurrence with a

— blank space.

for I in L.lastchar loop

if string_buffer(I) = "" then

string_buffer(I) := '

';

end if;

end loop;

—write the cleaned line to the output file.

Put(item => string_buffer(l..last_char));

put (File => req_outdata, Item => string_buffer(l..last_char));

new_line(File => req_outdata);

end if;

end loop;

—this is needed to show the end of the string in the database.

put(file => req_outdata, item => """");

new_line(File => req_outdata);

end processreq;

end process_req_pkg;

60

— Name: variables.ads

-Date: 4 April, 1997

— Author: Anthony E. Leonard

— Purpose: This file holds global variables to use with a

— netscape mail parser program.

package variables is

— declare variable used for formating

month_number : integer;

count : integer := 1;

start_date : integer := 61;

index : integer := 1;

field 1 : integer := 1;

fillO : natural

filll : natural

fill2 : natural

filB : natural

fill4 : natural

fill5 : natural

= 0;

= 1;

= 2;

= 3;

= 4;

= 5;

- declare size of a buffer to hold a line from the input file

size_of_buffer : integer := 100;

-- declare variables to hold fields taken from the input file

sizel : integer :=55;

size2 : integer := 4

size3 : integer := 3

size4 : integer := 5

size5 : integer := 3

1

size6 : integer := 39

size7 : integer := 20

size8 : integer := 56

size9 : integer := 10

—this is where the delimiter is

— declare strings used to strip unwanted information from an input

— line

string (l..size5);strip_stringl

strip_string2

strip_string3

strip_string4

string (l..size6)

string (l..size7)

string (l..size9)

-- declare string to hold an input line

stringbuffer : String (l..size_of_buffer);

- declare strings to hold field information from the input file

space : string(l..l) := " ";

specification_module_name : String (l..size4);

days_to_implement : String (l..size3);

programmerid : String (l..size4);

61

— Name: variables.ads (continued)

— Date: 4 April, 1997

— Author: Anthony E. Leonard
— Purpose: This file holds global variables to use with a

— netscape mail parser program.

month : string (1..10) :=
"

";

day : string (1..4) :=" ";

year : string (1..5) := " ";

— declare strings to hold the names of input and out files

infile_name : string(l..size_of_buffer);

output_file_name : string(l.. size_of_buffer);

— declare this string, which is a special string used to find the

— the text that we are interested in that is contained in the input

-file

flag : string (L.sizel) :=

"elow is the contents of a form. It was submitted by (";

— declare a variable to hold a character taken off to expose the EOF
— signature

nextchar : character;

— declare a variable to hold the length of a string

LastChar : Natural;

Last_Char2 : Natural;

— declare a variable to show if two strings were equal

is_desired : Boolean := true;

end variables;

62

APPENDIX B. FLARE INTERFACE SOURCE CODE

<i >

<!— Name: requirement_entryform.html >
<!-- Date: 29 March, 1997 >
<!-- Author: Anthony E. Leonard >
<!-- Purpose: This file is used by users to input requirements >
<!-- into the FLARE system. The file uses a form to call the >
<!-- FormMail.pl program located in the cgi-bin directory on >
<!-- the server. The file was partially produced using the editor

<!— found in Netscape Navigator version 3.01 . >
< i >

<HTML>
<HEAD>
<TITLE>Spec form</TITLE>
<META NAME="GENERATOR" C0NTENT="Mozilla/3 . OlGold (Win95; U)

[Netscape] ">

</HEAD>
<BODY>

<CENTER><P>
<!put the URL of FormMail here >

<F0RM METHOD=POST ACTION="http : //web . nps . navy .mil/cgi-bin/FormMail
.
pi ">

</P></CENTER>

<TABLE BORDER=l >

<CAPTI0NX/CAPTI0N>

<TR>
<TD ALIGN=CENTER VALIGN=TOP COLSPAN="" NOWRAP WIDTH="">
<TEXTAREA NAME=" comments" ROWS=15 COLS=60>Enter A New Requirement
Here . .

.

</TEXTAREA></TD>

<TD align=center valign=middle>
<CENTERXP><BXF0NT FACE="arial">Enter

Your

Personal

ID

Number</FONTx/B>

< ! The input size limits the number of characters allowed in the
personal ID field>
<INPUT SIZE=5 MAXLENGTH=5 NAME="Enter Your Personal ID Number">

63

<! >
<!-- Name: requirement_entryfoim.html (continued) >
<!-- Date: 29 March, 1997 >
<!-- Author: Anthony E. Leonard >
<!— Purpose: This file is used by users to input requirements >
<!-- into the FLARE system. The file uses a form to call the >

<!-- FormMail.pl program located in the cgi-bin directory on >
<!-- the server. The file was partially produced using the editor >
<!-- found in Netscape Navigator version 3.01. >

<! >

<! These two values are used by the parser to determine the end of
message>

<INPUT type="hidden" name="zend" value="Z"xBR>
<INPUT type="hidden" name="zzend" value="Zsa">

<!This is where you enter the address to mail the input to>
<INPUT type="hidden" name="email" value="R">

<INPUT type="hidden" name="recipient" value="Leonard@cs .nps .navy .mil">

<! These fields are required. If they are changed the parser must also
be changed>

<INPUT type=hidden name="required"
value="Enter Your Personal ID Number, Clip l,Clip 2, Clip 3, Clip 4">

<INPUT type=hidden name="sort" value="alphabetic">
<INPUT TYPE=SUBMIT VALUE="Send">

<INPUT TYPE=RESETX/PX/CENTER>
</TD>
</TR>
</TABLE>

<P>Enter Path of :</P>
<TABLE BORDER=l >

<TR>
<TD>Link 1: <INPUT SIZE=20 NAME="Clip 1" value="NONE"x/TD>
<TD>Link 2: <INPUT SIZE=20 NAME="Clip 2" value="NONE"x/TDX/TR>
<TR>
<TD>Link 3: <INPUT SIZE=20 NAME="Clip 3" value="NONE"> </TD>
<TD>Link 4: <INPUT SIZE=20 NAME="Clip 4" value="NONE"x/TD>
</TR>
</TABLE>

<!This is formatting information. Also contains the URL FormMail will
goto
< ! once the send button is pressed. >

<P>

64

<t >
<!-- Name: requirement_entryform.html (continued) >
<!-- Date: 29 March, 1997 >
<!— Author: Anthony E. Leonard >
<!— Purpose: This file is used by users to input requirements >
<!— into the FLARE system. The file uses a form to call the >
<!-- FormMail.pl program located in the cgi-bin directory on >
<!— the server. The file was partially produced using the editor

<!— found in Netscape Navigator version 3.01. >
<! >

Snbsp; <INPUT type=hidden name="redirect"
value="http: / /web. nps .navy .mil /-aeleonar/FLARE/DEMOfrontpage .html ">

</P>

<PX/FORMX/P>

</BODY>
</HTML>

<! >

<!— Name: DEMOfrontpage.html >
<!-- Date: 29 March, 1997 >
<!-- Author: Anthony E. Leonard >

<!— Purpose: This file creates the initial user interface. >
<!-- It has four pull-down menus: REQUIREMENTS, DESIGN, >
<!-- IMPLEMENTATION, AND MAINTENANCE. >
<!-- The file was partially produced using the editor >
<!— found in Netscape Navigator version 3.01 . >

<! >

<HTML>
<HEAD>
<TITLE>REQUIREMENTS</TITLE>
<SCRIPT LANGUAGE=' JavaScript'

>

<! These functions open the apporiated page selected by the user using
pulldown menus>

function switch_pagel () {

if (document .menuform. Fl . selectedlndex == 0) location =

' requirement_entryform. html '

;

65

<) >
<!-- Name: DEMOfrontpage.html (continued) >
<!-- Date: 29 March, 1997 >
<!-- Author: Anthony E. Leonard >
<!-- Purpose: This file creates the initial user interface. >
<!-- It has four pull-down menus: REQUIREMENTS, DESIGN, >
<!-- IMPLEMENTATION, AND MAINTENANCE. >
<!-- The file was partially produced using the editor >
<!— found in Netscape Navigator version 3.01 .

>

<! >

else if (document .menuform. Fl . selectedlndex == 1) location
' requirement_entryform . html '

;

else if (document .menuform. Fl . selectedlndex == 2) location
' Requirements_l .html '

;

else if (document .menuform. Fl . selectedlndex == 3) location
'requirement_question.html'

;

else if (document .menuform. Fl . selectedlndex == 4) location
1 requirements_questions_l . html '

;

else if (document .menuform. Fl . selectedlndex == 5) location
* MNS_1 . html '

;

}

function switch_page2 () {

if (document .menuform. F2 . selectedlndex == 0) location =

' specification_entryform. html '

;

else if (document .menuform. F2 . selectedlndex == 1) location
' specification_entryform.html '

;

else if (document .menuform. F2 . selectedlndex == 2) location
1 Specifications_l . html '

;

else if (document .menuform. F2 . selectedlndex == 3) location
1 design_question . html '

;

else if (document .menuform. F2 . selectedlndex == 4) location
' design_questions_l . html '

;

else if (document .menuform. F2 . selectedlndex == 5) location
' MNS 1 . html '

;

66

<! >
<!-- Name: DEMOfrontpage.html (continued) >
<!-- Date: 29 March, 1997 >
<!— Author: Anthony E. Leonard >
<!-- Purpose: This file creates the initial user interface. >
<!-- It has four pull-down menus: REQUIREMENTS, DESIGN, >
<!-- IMPLEMENTATION, AND MAINTENANCE. >
<!-- The file was partially produced using the editor >
<!-- found in Netscape Navigator version 3 .0 1 . >
<! >

function switch_page3 () {

if (document .menuform. F3 . selectedlndex == 0) location =

' change_request . html '

;

else if (document .menuform. F3. selectedlndex == 1) location
1 change_request . html '

;

else if (document .menuform. F3 . selectedlndex == 2) location
' Change_Requests_l . html '

;

else if (document .menuform. F5 . selectedlndex == 3) location
' bug_report . html '

;

else if (document .menuform. F5 . selectedlndex == 4) location
1 Bug_Reports_l . html '

;

else if (document .menuform. F5 . selectedlndex == 5) location
'maintenance_question.html'

;

else if (document .menuform. F5 . selectedlndex == 6) location
1 maintenance_questions_l . html '

;

else if (document .menuform. F3. selectedlndex == 7) location
' MNS 1 . html '

;

function switch_page4 () {

if (document .menuform. F4 .selectedlndex == 0) location =

' formpage . html '

;

else if (document .menuform. F4 . selectedlndex == 1) location
' formpage . html '

;

else if (document .menuform. F4 . selectedlndex == 2) location
' Specifications_l . html '

;

67

<! >
<!-- Name: DEMOfrontpage.html (continued) >
<!-- Date: 29 March, 1997 >
<!-- Author: Anthony E. Leonard >
<!-- Purpose: This file creates the initial user interface. >
<!-- It has four pull-down menus: REQUIREMENTS, DESIGN, >
<!-- IMPLEMENTATION, AND MAINTENANCE. >
<!-- The file was partially produced using the editor >
<!— found in Netscape Navigator version 3.01 .

>
<! >

else if (document .menuform. F4 . selectedlndex == 3) location
' Requirements_l . html '

;

else if (document .menuform. F4 . selectedlndex == 4) location
1 implementation_question.html '

;

else if (document .menuform. F4 . selectedlndex == 5) location
1 implementation_questions_l . html '

;

else if (document .menuform. F4 . selectedlndex == 6) location
' MNS 1 . html '

;

}

</SCRIPT>
</HEAD>

<! Display pull-down menus with choices (requirements, design,
implementation, and maintenance)

>

<BODY LINK="#0000FF" VLINK="#800080">

<CENTERXTABLE BORDER=0 WIDTH="100%" HEIGHT="90%">
<CENTERXP><F0RM WIDTH=25 NAME="menuform"x/Px/CENTER>
<CENTERXTABLE BORDER=l>
<TR>

<! Display "Front Loaded Accurate Requirements Engineering">
<TDXFONT COLOR="#FF0000"XFONT SIZE=+3>F</FONTX/FONT>RONT
<PXFONT COLOR="#FF0000"XFONT SIZE=+3>L</FONTX/FONTXB>OADED</BX/P>
<PXFONT COLOR="#FF0000"XFONT
SIZE=+3>A</FONTX/FONTXB>CCURATE</P>
<PXFONT COLOR="#FF0000"XFONT
SIZE=+3>R</F0NTX/F0NTXB>EQUIREMENTS</BX/P>
<PXFONT COLOR="#FF0000"XFONT
SIZE=+3>E</F0NTX/F0NT>NGINEERING</BXBR>

</P>

68

<! >

<!-- Name: DEMOfrontpage.html (continued) >
<!--Date: 29 March, 1 997 >
<!-- Author: Anthony E. Leonard >
<!-- Purpose: This file creates the initial user interface. >
<!-- It has four pull-down menus: REQUIREMENTS, DESIGN, >
<!-- IMPLEMENTATION, AND MAINTENANCE. >
<!— The file was partially produced using the editor >
<!-- found in Netscape Navigator version 3.01. >
<i >

<CENTERXP><BXF0NT SIZE=-2XA HREF= "FLARE, html" >FOR
MORE
INFORMATION

CLICK HERE.</AX/F0NTX/BX/PX/CENTER>
</TD>
<TD>
<CENTERXTABLE CELLSPACING=0 CELLPADDING=0 WIDTH="100%" HEIGHT="100%" >

<TR>
<TD></TD>
<TD>

< ! Display pull-down menus>

<CENTERXPXSELECT NAME="F1" onChange=' switch_pagel () ;
' align="left" >

<OPTION>REQUIREMENTS
<OPTION>Enter Requirement
<OPTION>View Requirements
<OPTION>Ask A Req. Question
<OPTION>View Req. Questions
<OPTION>Mission Needs Statement
</SELECTX/PX/CENTER>
</TDXTDX/TD></TRXTRXTD>

<DIV ALIGN-rightXPXlMG SRC="rightarrow. gif " HEIGHT=87
WIDTH=85X/P></DIVX/TDXTDX/TD>

<TD>

<TRXTD>
<CENTER><PXSELECT NAME="F2" onChange=' switch_page2 () ; • align="center">

<OPTION>DESIGN
<OPTION>Enter Specification
<OPTION>View Specifications
<OPTION>Ask A Design Question
<OPTION>View Design Questions
<OPTION>Mission Needs Statement
</SELECT></PX/CENTER>
</TD>

69

<! >
<!-- Name: DEMOfrontpage.html (continued) >
<!--Date: 29 March, 1997 >
<!— Author: Anthony E. Leonard >
<!-- Purpose: This file creates the initial user interface. >
<!-- It has four pull-down menus: REQUIREMENTS, DESIGN, >
<!-- IMPLEMENTATION, AND MAINTENANCE. >
<!-- The file was partially produced using the editor >
<!-- found in Netscape Navigator version 3.01 . >

<! >

<TD>
<CENTERXP>
<IMG SRC="Test.gif" ALT="U.S. ARMY" HEIGHT=121 WIDTH=121
ALIGN=ABSCENTER></PX/CENTER>
</TDXTD>
<CENTER><PXSELECT NAME="F3" onChange= ' switch_page3 () ;

' align="center">

<OPTION>MAINTENANCE
<OPTION>Enter Change Request
<OPTION>View Change Requests
<OPTION>Enter A Bug Report
<OPTION>View Bug Reports
<OPTION>Ask Maintenance Question
<OPTION>View Maintenance Questions
<OPTION>Mission Needs Statement
</SELECTX/PX/CENTER>
</TD>
</TR>

<TRXTD><DIV ALIGN=right><P><IMG SRC="leftarrow. GIF" HEIGHT=87
WIDTH=85X/P></DIV>
</TD>

<TDX/TD>
<TDXIMG SRC="rightarrow.gif" HEIGHT=87 WIDTH=85x/TDx/TR>

<TRXTDXCENTERXPXFONT SIZE=-l> </FONTx/PX/CENTER>
</TDXTDX/TDXTDX/TDx/TR></TABLEX/CENTER>

<CENTERXTABLE>
<TRXTDXSELECT NAME="F4" onChange= ' switch_page4 () ;

' align="center">

<OPTION>IMPLEMENTATION
<OPTION>Enter Estimations
<OPTION>View Specifications
<OPTION>View Requirements
<OPTION>Ask Implementation Question
<OPTION>View Implementation Questions
<OPTION>Mission Needs Statement
</SELECT></TD>

70

<! >
<!— Name: DEMOfirontpage.html (continued) >
<!-- Date: 29 March, 1997 >

<!-- Author: Anthony E. Leonard >
<!-- Purpose: This file creates the initial user interface. >
<!-- It has four pull-down menus: REQUIREMENTS, DESIGN, >
<!-- IMPLEMENTATION, AND MAINTENANCE. >
<!-- The file was partially produced using the editor >
<!-- found in Netscape Navigator version 3.01 . >
<! >

<TD WIDTH="20" HEIGHT="20"x/TDX/TR>
</TABLEX/CENTERX/TDX/TR>
</TABLEX/CENTER>

<CENTER><TABLE CELLSPACING=0 CELLPADDING=0 WIDTH="80%" HEIGHT="4%"
BGCOLOR="#FFFF80" ><TR>

<TD>"<BXFONT SIZE=+lxA
HREF="http: //www. sei .cmu.edu/products/publications/92.reports/92 . tr . 012
.html">Requirements
engineering</Ax/FONTx/B> is the disciplined application of scientific
principles and techniques for developing, communicating, and managing
requirements "[p.
68]</FONTx/TD>

</TR>
</TABLE></CENTERX/TR>
</TABLEX/CENTER>

</BODY>
</HTML>

71

72

LIST OF REFERENCES

1

.

Luqi and Goguen, J., "Formal Methods: Promises and Problems," IEEE Software, January 1997, pp.
73-85.

2. Joint Pub 0-2, Unified Action Armed Forces (UNAAF), 24 February 1995.

3. Zave, P., "Classification of Research Efforts in Requirements Engineering," in Proceedings Second
IEEE International Symposium on Requirements Engineering, IEEE Computer Soc. Press, Los
Alamitos, Calif, 1995, pp. 214-216.

4. Software Test & Evaluation Panel (STEP), Requirements Definition Implementation Team.
"Operational Requirements for Automated Capabilities," Draft Pamphlet (Draft PAM), April 23, 1991,

available from http://140.229. 1 . 1 6:9000/htdocs/teinfo/directives/pub/pub63d.html ; Internet: accessed

8 March 1997. Quoted in M. Christel and K. Kang, "Issues in Requirements Elicitation," Software

Engineering Institute, CMU/SEI-92-TR-012, ESC-TR-92-012, September 1992.

5. Emam, K., Quintin, S. and Madhavji, N., "User Participation in the Requirements Engineering

Process: An Empirical Study," Requirements Engineering (1996), Vol 1, number 1:4-26 1996,

Springer-Verlag London Limited, available from http://www.mac.co.umist.ac.uk/RE/Volume-l/Issue-

1/Vol- 1 Jssue- 1 ,2.html ; Internet; accessed 15 February 1997.

6. Booch, B., Software Engineering with Ada, 3
rd

edition, Benjamin/Cummings, Redwood City,

California, 1994.

7. Rumbaugh, J., et al., Object-Oriented Modeling and Design. Englewood Cliffs: Prentice Hall, 1991.

8. Booch, G., "Grady Booch: Chief Scientist," available from

http://www.rational.com/ot/booch bio.html; Internet: accessed 1 April 1997.

9. Jones, C, "Object-Oriented Analysis with CASE," in Computer-Aided Software Engineering: Issues

and Trends for the 1990s and Beyond, Idea Group Publishing, Harrisburg, PA., editor T. Bergin, 1993,

pp. 318-359.

10. Luqi, Ketabchi, M., "A Computer-Aided Prototyping System," IEEE Computer Technology Series,

Computer-Aided Software Engineering (CASE), Editor: E. Chikofsky, 1988, pp. 89-95.

11. Jacobson, I., Home Page, available from http://www.rational.com/world/bios/iacobson bio.html

Internet: accessed 10 May 1997.

12. The Requirements Engineering Specialist Group of the British Computer Society, "Other

Requirements Engineering Sites," available from http://www.cs.york.ac.uk/bcs/resg/sites.htm Internet:

accessed 1 April 1997.

13. Georgia Tech, "Software Engineering Related Hotlists: Requirements Engineering," available from

http://www.cc.gatech.edu/computing/SW Eng/hotlist.html ; Internet: accessed 1 April 1997.

14. Man-Tak Shing, Associate Professor, Computer Science Department, Naval Postgraduate School,

Monterey, CA. Interview by author, notes. Monterey, CA, 1 April 1997.

73

15. Berzins, V. and Luqi, Software Engineering with Abstractions, Addison-Wesley Publishing Company,
Reading, MA, 1991.

16. Luqi, "The Role of Prototyping Languages in CASE," in International Journal of Software Engineering

and Knowledge Engineering, World Scientific Publishing, Vol. 1, No. 2, 1994, pp. 131-149.

17. Noel, A., "Prototyping With Data Dictionaries for Requirements Analysis," Masters Thesis, Naval

Postgraduate School, Monterey, California, March 1985.

18. Awad, M., Kuusela, J. and Ziegler, J., Object-Oriented Technology for Real-Time Systems, Upper
Saddle River: Prentice Hall, 1996.

19. Rational Rose Inc., Unified Modeling Language version 1.0, available from

http://www.rational.eom/ot/uml/l.0/index.html Internet: accessed 3 April 1997.

20. Defense Information Systems Agency (DISA) Home Page, available from http://www.disa.mil

Internet: accessed 3 April 1997.

21. Parnas, D, Home Page, available from http://www.crl.mcmaster.ca/SERG/pamas.homepg Internet:

accessed 21 May 1997.

22. Bharadwaj, Ramesh and Heitmeyer, Constance L., "Applying the SCR Requirements Specification

Method to Practical Systems: A Case Study," Presented at the 21st Software Engineering Workshop,

NASA GSFC, Greenbelt MD, USA, Dec 4-5, 1996. Available from

htm://www.itd.ml.navy.rml/ITD/5540/publicatiom/CHACS/1996/mdexl996-txt.html Internet:

accessed 3 April 1997.

23. DISA, "Joint Requirements Analysis and Integration", available from

http://www.disa.mil/D7/rnissum.htrnl Internet: accessed 3 April 1997.

24. DISA, "Defense Information Infrastructure Common Operating Environment Home Page ," available

from http://spider.osfl.disa.mil/dii/ Internet: accessed 3 April 1997.

25. Faulk, S., "Requirements Engineering: A Tutorial," Naval Research Lab, NRL/MR/5546—95-7775,

November 14, 1995. Available from

http://www.itd.nrl.naw.mi1/ITD/5 540/publications/CHACS/ 1 995/index 1 995 .html Internet: accessed 2

April 1997.

26. Heitmeyer, Constance L., "Requirements Specifications for Hybrid Systems," Proceedings, Hybrid

Systems Workshop III, Lecture Notes in Computer Science, Springer-Verlag, edited by R. Alur, T.

Henzinger, and E. Sontag, 1996. Available from

htro://www.itd.ml.navy.nul/ITD/5540/publications/CHACS/1996/mdexl996-txt.html Internet:

accessed 3 April 1997.

27. Luqi and Shing, M., "CAPS - A Tool for Real-Time System Development and Acquisition," Quarterly

Review, Office ofNaval Research, Vol. XLIV, No. 1, 1992, pp. 12-16.

28. Luqi, "Real-Time Constraints in a Rapid Prototyping Language," Journal of Computer Languages,

Vol. 18, No. 2, Spring 1993, pp. 77-103.

74

29. Joint Pub 6-0. Doctrine for Command, Control, Communications, and Computer (C4) Systems
Support to Joint Operations, 30 May 1995.

30. Defense Information Systems Agency, "Requirements Assessment and Interoperability Certification of

C4I and AIS Equipment and Systems," available from

http://babbage6.itsi.disa.mil:80/ntb/9002/9002.pdf Internet: accessed 15 April 1997.

3 1

.

Hoenig, C, Information Technology: Best Practices Can Improve Performance and Produce Results

(Testimony, 02/26/96, GAO/T-AIMD-96-46).

32. Standish Group Int'l, Chaos 97, tech. Report, Dennis, Massachusetts, available from

http://www.standishgroup.com/chaos.htrnl ; Internet: accessed 14 February 1997.

33. Secretary of Defense Memorandum, Use of Integrated Product and Process Development and

Integrated Product Teams in DoD Acquisition, May 10 1995.

34. DoD 5000.2-R, "Mandatory Procedures for Major Defense Acquisition Programs and Major

Automated Information Systems, 1996.

35. DoD Directive 5000.1, "Defense Acquisition," March 15 1996.

36. Secretary of Defense Memorandum, Cost as an Independent Variable, available from

http://www.acq.osd.mil/dau/arcc/accelday/caiv.pdf ; Internet: accessed 16 April 1997.

37. Valetto, G. and Kaiser, G., "Enveloping Sophisticated Tools into Computer-Aided Software

Engineering Environments," in Proceedings 7
th

International Workshop on Computer-Aided Software

Engineering, IEEE Computer soc. Press, Los Alamitos, Calif., 1995, pp. 40-48.

38. Ramesh, B., Powers, T., Stubbs, C. and Edwards, M. "Implementing Requirements traceability: A
Case Study," in Proceedings Second IEEE International Symposium on Requirements Engineering,

IEEE Computer soc. Press, Los Alamitos, Calif., 1995, pp. 89-95.

39. Brun-Cottan F. and Wall, P., "Using Video to Re-Present the User," Communications of the ACM,
Vol. 38, No. 5, May 1995, pp. 61-71.

40. Kaiya, H., Saeki, M. and Ochimizu, K., "Design of a Hyper Media Tool to support Requirements

Elicitation Meetings," in Proceedings 7
th

International Workshop on Computer-Aided Software

Engineering, IEEE Computer soc. Press, Los Alamitos, Calif., 1995, pp. 250-259.

41. CASE tool index, Queen's University in Kingston, Ontario, available from

http://www.qucis.queensu.ca/Software-Engineering/tools.html Internet; accessed 22 March 1997.

42. Luqi, Berzins, V. and Yeh, R., "A Prototyping Language for Real-Time Software," IEEE Transactions

on Software Engineering, Vol. 14, No. 10, October 1988, pp 1409-1423.

43. Luqi, "Software Evolution Through Rapid Prototyping," IEEE Computer, May 1989, pp. 13-25.

44. Macedonia M. and Brutzman, D., "MBone Provides Audio and Video Across the Internet," available

from: ftp://taurus.cs.nps.naw.mil/pub/mbmg/mbone.html Internet; accessed 22 March 1997.

75

45. Progressive Networks, "Real Audio and Video," available from: http://www.real.com/rvnba.html

Internet; accessed 22 March 1997.

46. Intel, "Internet Video Phone with Proshare Technology," available from:

http://connectedpc.com/iaweb/cpc/iivphone/index.htm Internet; accessed 22 March 1997.

47. O'Leary, D., "The Internet, Intranets, and the AI Renaissance," Computer, January 1997, pp. 71-78.

48. Autonomy Corporation, "Autonomy Agents," available from: http://www.agentware.com Internet:

accessed 23 March 1997.

49. Poor, A., "DVD and CD-ROM: 21st Century Storage," PC Magazine Online, available from:

http://www.pcmag.com/fearures/cdrom/ open.htm Internet: accessed 23 March 1997.

50. Toshiba Corp., "A revolution is coming and it will change everything you think about Home
Entertainment," available from http://www.toshiba.com/tacp/SD/iavahome.html Internet: accessed 23

March 1997.

51. Computer Mail Order, advertisement, Byte, McGraw-Hill, Peterborough, NH, January 1987.

52. Turner Hall Publishing, advertisement, Byte, McGraw-Hill, Peterborough, NH, January 1987.

53. Nevada Computer, advertisement, Byte, McGraw-Hill, Peterborough, NH, January 1992.

54. Computerlane, advertisement, Byte, McGraw-Hill, Peterborough, NH, January 1997.

55. First Source International, advertisement, Byte, McGraw-Hill, Peterborough, NH, January 1997.

56. Crothers, B., "Memory Prices Creep Back Up," CNET, Inc., available from:

http://www.news.com/News/Item/0,4,8426,00.html Internet: accessed 12 May 1997, quoting Handy
from Dataquest, available from: http://www.dataquest.com Internet: accessed 12 May 1997.

57. NCSA, "A Beginner's Guide to HTML," available from:

http://www.ncsa.uiuc.edu/GeneralTntemet/WWW/HTMLPrimerAll.htrnl Internet: accessed 23 March

1997.

58. Luqi, "A Graph Model for Software Evolution," in IEEE Computer Society Press tutorial, Software

Merging and Slicing, collected by V. Berzins, May 1995, pp. 202-212.

59. University of Kansas, "An Instantaneous Introduction to CGI Scripts and HTML Forms," available

from: http://www.cc.ukans.edu/mfo/forms/fonns-mlTO.htrnl Internet: accessed 23 March 1997.

60. Wright, M., FormMail, available from: http ://www .worldwidemart .com/scripts/formmail.shtml

Internet: accessed 23 March 1997.

61. Badr, S. and Luqi, "Automation Support for Concurrent Software Engineering," Proceeding of the 6

International Conference on Software Engineering and Knowledge Engineering, Jurmala, Latvia, June

1994, pp. 46-53.

62. Microsoft Corporation, available from: http://www.microsoft.com Internet: accessed 1March 1997.

76

63. Leonard, A., "Flare Download Site," available from:

http://www.cs.nps.navy.miVmisc/flare/Readrne.html Internet: accessed 14 April 1997.

64. Netscape Corporation, "JavaScript Authoring Guide," available from:

http://home.netscape.conVeng/mozilla/Gold/handbook/javascript/index.html Internet: accessed 16

April 1997.

65. Web Communications, "WWW Fill-Out Forms," available form:

http://www.webcom.com/~webcom/h1inl/tutor/fonns Internet: accessed 16 April 1997.

66. Netscape Corporation, available from: http://home.netscape.com Internet: accessed 16 April 1997.

67. Elmasri, R. and Navathe, S. B., Fundamentals of Database Systems, The Benjamin/Curnrnings

Publishing Company, Redwood City, CA 1994.

68. Cormen, T. H., Leiserson, C. E. and Rivest, R. L., Introduction to Algorithms, MIT Press, Cambridge.

1990

69. Quality Systems Software "Introducing Doors 3.0," available from:

http://www.qssinc.com/doors/fmd out.html Internet: accessed 18 April 1997.

70. West Virginia University and NASA, "The Web-Integrated Software metrics Environment (WISE),"

available from http://research.iw.nasa.gov/projects/WISE Internet: accessed 18 April 1997.

71. Rational Software Corporation, Rational Rose, available from: http://www.rational.com Internet:

accessed 18 April 1997.

72. Aonix, "OjectAda for windows," available from: http://www.aonix.com/Products/Ada/factsht.html

Internet: accessed 18 April 1987.

77

78

BIBLIOGRAPHY

Chairman Joint Chiefs of Staff (CJCS) MOP 77, Requirements Generation System Policies and Procedures.

CJCS Instruction 62 12.01 A, Compatibility, Interoperability, and Integration of Command, Control,

Communications, Computers, and Intelligence Systems, June 30, 1995.

Duvall, L., "The Information Needs of Software Managers: A problem Driven Perspective," Proc.17*

international Computer Software & Applications Conference, IEEE Computer soc. Press, Los Alamitos,

Calif., Nov., 1993, pp. 270-276.

Easterbrook, S. and Callahan, J., "SCR as an IV&V Tool," Available from:

http://research.iw.nasa.gov/~steve/papers/SCR96/scr.html Internet: accessed 10 May 1997.

Faulk, Stuart R., "Software Requirements: A Tutorial," NRL Memo Report 5546-95-7775, November
1995.

Heitmeyer, C, Bull, A., Gasarch, C. and Labaw, B., "SCR*: A Toolset for Specifying and Analyzing

Requirements,"Proceedings of the Tenth Annual Conference on Computer Assurance (COMPASS '95),

Gaithersburg, MD, June 25-29,1995, pp. 109-122. Available from:

http://www.itd.nrl.naw.mil/ITD/5540/publications/CHACS/ 1 995/index 1 995 .html Internet: accessed 18

April 1997.

ISO/IEC 12207:1995. Information technology — Software life cycle processes.

Joint Pub 0-2, Unified Action Armed Forces (UNAAF), 24 February 1995, pg IV-5.

Luqi, "Knowledge-Based Support for Rapid Prototyping," in Source Book of Applied Artificial

Intelligence, McGraw-Hill, 1992.

Luqi, "Computer-Aided Prototyping for a Command-and-Control System Using CAPS," in Software

Automation, Editor: D. Cooke, World Scientific Publishing, 1994.

Luqi, Shing, M., and Berzins, V., "An Automated Prototyping Tool for System Development and

Acquisition, "NetFocus, No. 211, May, 1995, pp. 2-3.

Luqi and Yeh, R, "Rapid Prototyping in Software Development," in Encyclopedia of Software

Engineering, John Wiley & Sons, Inc., 1994, pp. 1-21.

Mowbray, T. J., "An Introduction to CORBA," available from:

htlp://stscols.hill.af.mil/CrossTalk/1997/feb/corba.hrml Internet: accessed 18 April 1996.

Office of the Secretary of Defense Memorandum, "Use of Ada," August 26, 1994.

Office of the Secretary of Defense Memorandum, "Software Acquisition Best Practices Initiative," July 8,

1994.

79

Office of the Under Secretary of Defense, DoD Guide to Integrated Product and Process Development.
Available from: http://www.acq.osd.mil/te/survey/table of contents.html Internet: accessed 18 April 1997.

Paulk, M., Curtis, B., Chrissis, M. and Weber, C, "Capability Maturity Model for Software, Version 1.1",

Software Engineering Institute, CMU/SEI-93-TR-24, DTIC Number ADA263403, February 1993.

Paulk, M., Weber, C, Garcia, S., Chrissis, M. and Bush, M., "Key Practices of the Capability Maturity

Model, Version 1.1", Software Engineering Institute, CMU/SEI-93-TR-25, DTIC Number ADA263432,
February 1993.

Report of the Defense Science Board Task Force on Acquiring Defense Software Commercially, June

1994. Available from: http://www.dtic.dla.mil/c3i/dsb.html Internet: accessed 18 April 1997.

Seveney, J. and Steinberg, G., "Requirements Analysis For a Low Cost Combat Direction System,"

Masters Thesis, naval Postgraduate School, Monterey, California, June 1990.

Software Technology Support Center, "Guidelines for Successful Acquisition and Management of

Software Intensive Systems, Version 2.0" June 1996

Software Technology Support Center, "Software Configuration Management Technology Report"

September 1994. Available from: http://stscols.hill.af.mil/CM/REPORT.HTML Internet: accessed 15

February 1997.

Stevens, R., and McCaskill, G., "Methods and Tools for the Interactions Between Systems and Software,"

available from: htm://www.qssinc.com/papers/syscase3.html Internet: accessed 18 April 1997.

Under Secretary of Defense for Acquisition and Technology Memorandum, "Policy on Cost-Performance

Trade-Offs," July 19, 1995.

Unfinished Voyages, Technical.Report, Standish Group IntT, Dennis, Massachusetts, available from

http://www.standishgroup.com/voyages.html Internet; accessed 21 February 1997.

Vemulapalli, C, "A Use Case FAQ(Frequently Asked Questions)," available from:

http ://www.unantes .univ-nantes . fr/usecase/Contributions/chandra.html Internet: accessed 2 April 1997.

Werner, M., "Database Design From Use Cases, Roles and Actors," available from

http://www.unantes.univ-nantes.fr/usecase/rootExtension.html Internet: accessed 2 April 1997.

80

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2

8725 John J. Kingman Rd., STE 0944

Ft. Belvoir, VA 22060-6218

2. Dudley Knox Library 2

Naval Postgraduate School

411 Dyer Rd.

Monterey, CA 93943-5101

3. ECJ6-NP 1

HQUSEUCOM
Unit 30400 Box 1000

APO, AE 09128

4. CDR Michael J. Holden, USN 3

Computer Science Department, Code CS/Hm
Naval Postgraduate School

833 Dyer Road
Monterey CA 93943-5 1 1 8 USA

5. Valdis Berzins 1

Computer Science Department, Code CS
Naval Postgraduate School

833 Dyer Road
Monterey CA 93943-51 18 USA

6. Luqi 1

Computer Science Department, Code CS
Naval Postgraduate School

833 Dyer Road
Monterey CA 93943-5 118 USA

7. Ted Lewis 1

Computer Science Department, Code CS
Naval Postgraduate School

833 Dyer Road
Monterey CA 93943-51 18 USA

8. David Hislop 1

US Army Research Office

PO Box 12211

Research Triangle Park NC, 27709-221

1

81

9. David Dampier

Array Research Lab

115 O'Keefe Building

Attn: AMSRL-IS-C
Atlanta GA,30332-8062

10. CPT Anthony E. Leonard

Department of Electrical Engineering and Computer Science

United States Military Academy
West Point, NY 10996

82

DUDLEY KNOX LIBRARY

3 2768 00339211 9

